# Nuclear String Hypothesis

M. Pitkänen<sup>1</sup>, April 8, 2007

<sup>1</sup> Department of Physical Sciences, High Energy Physics Division, PL 64, FIN-00014, University of Helsinki, Finland. matpitka@rock.helsinki.fi, http://www.physics.helsinki.fi/~matpitka/. Recent address: Puutarhurinkatu 10,10960, Hanko, Finland.

# Contents

| 1        | Intr         | roduction                                                                                                                                                            | <b>5</b> |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | 1.1          | $A > 4$ nuclei as nuclear strings consisting of $A \le 4$ nuclei                                                                                                     | 5        |
|          | 1.2          | Bose-Einstein condensation of color bonds as a mechanism of nuclear binding                                                                                          | 6        |
|          | $1.3 \\ 1.4$ | Giant dipole resonance as de-coherence of Bose-Einstein condensate of color bonds<br>Dark nuclear strings as analogs of as analogs of DNA-, RNA- and amino-acid se-  | 6        |
|          |              | quences and baryonic realization of genetic code                                                                                                                     | 6        |
| <b>2</b> | Son          | ne variants of the nuclear string hypothesis                                                                                                                         | 7        |
|          | 2.1          | Could linking of nuclear strings give rise to heavier stable nuclei?                                                                                                 | 7        |
|          | $2.2 \\ 2.3$ | Nuclear strings as connected sums of shorter nuclear strings?         Is knotting of nuclear strings possible?                                                       | 7<br>7   |
| 3        | Cou          | uld nuclear strings be connected sums of alpha strings and lighter nuclear                                                                                           |          |
|          | stri         | ngs?                                                                                                                                                                 | 8        |
|          | 3.1          | Does the notion of elementary nucleus make sense?                                                                                                                    | 8        |
|          | 3.2          | Stable nuclei need not fuse to form stable nuclei                                                                                                                    | 8        |
|          | $3.3 \\ 3.4$ | Formula for binding energy per nucleon as a test for the model Decay characteristics and binding energies as signatures of the decomposition of                      | 9        |
|          |              | nuclear string                                                                                                                                                       | 9        |
|          | 3.5          | Are magic numbers additive?                                                                                                                                          | 10       |
|          | 3.6          | Stable nuclei as composites of lighter nuclei and necessity of tetra-neutron?                                                                                        | 10       |
|          | 3.7          | What are the building blocks of nuclear strings?                                                                                                                     | 11       |
|          |              | 3.7.1 Option Ia) $\ldots$                                                                                                                                            | 11       |
|          |              | 3.7.2 Option Ib)                                                                                                                                                     | 12       |
|          |              | 3.7.3 Options IIa) and IIb)                                                                                                                                          | 12       |
| <b>4</b> | Ligl         | ht nuclei as color bound Bose-Einstein condensates of ${}^{4}He$ nuclei                                                                                              | 13       |
|          | 4.1          | How to explain the maximum of $E_B$ for iron? $\ldots$                                                                                                               | 13       |
|          | 4.2          | Scaled up QCD with Bose-Einstein condensate of ${}^{4}He$ nuclei explains the growth of                                                                              |          |
|          |              | $E_B$                                                                                                                                                                | 14       |
|          | 4.3          | Why $E_B$ decreases for heavier nuclei?                                                                                                                              | 15       |
|          |              | 4.3.1 Fermi statistics as a reason for the reduction of the binding energy $4.3.2$ Could upper limit for the size of ${}^{4}He$ Bose-Einstein condensate explain the | 15       |
|          |              | maximum of binding energy per nucleon?                                                                                                                               | 17       |

| <b>5</b> | Wh             | at QCD binds nucleons to $A \le 4$ nuclei?                                                                                                          | 17        |
|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|          | 5.1            | The QCD associated with nuclei lighter than ${}^{4}He$                                                                                              | 17        |
|          |                | 5.1.1 Various options to consider                                                                                                                   | 17        |
|          |                | 5.1.2 Option Ia): Ordinary nucleons and massless color bonds                                                                                        | 18        |
|          |                | 5.1.3 Other options $\ldots$                                       | 19        |
|          | 5.2            | The QCD associated with ${}^{4}He$                                                                                                                  | 20        |
|          | 5.3            | What about tetra-neutron?                                                                                                                           | 20        |
|          | 5.4            | What could be the general mass formula?                                                                                                             | 21        |
|          | 5.5            | Nuclear strings and cold fusion                                                                                                                     | 22        |
|          |                | 5.5.1 Signatures of cold fusion                                                                                                                     | 22        |
|          |                | 5.5.2 Could exotic deuterium make cold fusion possible?                                                                                             | 23        |
|          |                | 5.5.3 About the phase transition transforming ordinary deuterium to exotic deu-                                                                     |           |
|          |                | terium                                                                                                                                              | 24        |
|          |                | 5.5.4 Exotic weak bosons seem to be necessary                                                                                                       | 25        |
|          | 5.6            | Strong force as a scaled and dark electro-weak force?                                                                                               | 25        |
| 6        | Gia            | nt dipole resonance as a dynamical signature for the existence of Bose-                                                                             |           |
|          | Ein            | stein condensates?                                                                                                                                  | <b>26</b> |
|          | 6.1            | De-coherence at the level of ${}^{4}He$ nuclear string $\ldots \ldots \ldots$ | 27        |
|          | 6.2            | De-coherence inside ${}^{4}He$ nuclei                                                                                                               | 27        |
|          |                | 6.2.1 Resonance energies                                                                                                                            | 27        |
|          |                | 6.2.2 Some tests                                                                                                                                    | 28        |
|          |                | 6.2.3 Predictions for cross sections                                                                                                                | 30        |
|          | 6.3            | De-coherence inside $A = 3$ nuclei and pygmy resonances $\ldots \ldots \ldots \ldots \ldots$                                                        | 30        |
|          | 6.4            | De-coherence and the differential topology of nuclear reactions                                                                                     | 31        |
| 7        | $\mathbf{Col}$ | d fusion, plasma electrolysis, and burning salt water                                                                                               | 32        |
|          | 7.1            | The data                                                                                                                                            | 33        |
|          |                | 7.1.1 Findings of Kanarev                                                                                                                           | 33        |
|          |                | 7.1.2 Findings of Mizuno                                                                                                                            | 33        |
|          | 7.2            | $H_{1.5}O$ anomaly and nuclear string model                                                                                                         | 34        |
|          |                | 7.2.1 $H_{1.5}O$ anomaly and anomalous production of electron-positron pairs in heavy                                                               |           |
|          |                | ion collisions                                                                                                                                      | 34        |
|          |                | 7.2.2 Nuclear string model                                                                                                                          | 35        |
|          |                | 7.2.3 Two options $\ldots$                                         | 35        |
|          |                | 7.2.4 Nuclei and their dark variants must have same binding energy scale at nuclear                                                                 |           |
|          |                | quantum criticality                                                                                                                                 | 37        |
|          | 7.3            | A model for the observations of Mizuno                                                                                                              | 37        |
|          |                | 7.3.1 General assumptions of the model                                                                                                              | 38        |
|          |                | 7.3.2 Production mechanisms for the light nuclei common to $Na$ and $K$                                                                             | 39        |
|          |                | 7.3.3 How to understand the difference between KOH and NOH?                                                                                         | 40        |
|          | 7.4            | Comparison with the model of deuterium cold fusion                                                                                                  | 41        |
|          |                | 7.4.1 Earlier model                                                                                                                                 | 41        |
|          |                | 7.4.2 Are $D$ nuclei in $Pd$ target dark or not?                                                                                                    | 41        |
|          |                | (.4.3 Nuclear quantum criticality is essential                                                                                                      | 42        |
|          | 7.5            | What happens to $OH$ bonds in plasma electrolysis?                                                                                                  | 42        |
|          |                | 7.5.1 The reduction of energy of $OH$ bonds in plasma electrolysis                                                                                  | 42        |
|          |                | 7.5.2 Are hydrogen bonds dark <i>OH</i> bonds?                                                                                                      | 43        |
|          |                | 7.5.3 Mechanism transforming $OH$ bonds to their dark counterparts                                                                                  | 43        |
|          | 7.6            | A model for plasma electrolysis                                                                                                                     | 44        |
|          |                | (.0.1 Brief description of plasma electrolysis                                                                                                      | 44        |
|          |                |                                                                                                                                                     |           |

|   |      | 7.6.2   | What really happens in electrolysis and plasma electrolysis?                 | 44 |
|---|------|---------|------------------------------------------------------------------------------|----|
|   |      | 7.6.3   | Over-unity energy production?                                                | 45 |
|   |      | 7.6.4   | Has living matter invented cold nuclear physics?                             | 48 |
|   | 7.7  | Compa   | arison with the reports about biological transmutations                      | 48 |
|   |      | 7.7.1   | Fortuitous observations                                                      | 48 |
|   |      | 7.7.2   | Examples of various anomalies                                                | 48 |
|   | 7.8  | Are th  | he abundances of heavier elements determined by cold fusion in interstellar  |    |
|   |      | mediu   | m?                                                                           | 49 |
|   |      | 7.8.1   | Are heavier nuclei produced in the interstellar space?                       | 49 |
|   |      | 7.8.2   | The abundances of nuclei in interstellar space should not depend on time .   | 50 |
|   |      | 7.8.3   | Could also "ordinary" nuclei consist of protons and negatively charged color |    |
|   |      |         | bonds?                                                                       | 50 |
|   | 7.9  | Tests a | and improvements                                                             | 51 |
|   |      | 7.9.1   | Test for the hypothesis about new physics of water                           | 51 |
|   |      | 7.9.2   | Testing of the nuclear physics predictions                                   | 51 |
|   |      | 7.9.3   | Relationship to the model of Widom and Larsen and further tests              | 52 |
|   |      | 7.9.4   | How to optimize the energy production?                                       | 52 |
|   | 7.10 | Burnir  | ng salt water by radio-waves and cold fusion by plasma electrolysis          | 53 |
|   |      | 7.10.1  | Do radio waves of large Planck constant transform to microwaves in the       |    |
|   |      |         | process?                                                                     | 53 |
|   |      | 7.10.2  | Connection with plasma electrolysis?                                         | 53 |
|   | 7.11 | GSI ar  | nomaly                                                                       | 55 |
| 8 | Dar  | k nucl  | ear strings as analogs of DNA BNA- and amino-acid sequences and              |    |
| U | bary | zonic r | ealization of genetic code?                                                  | 57 |
|   | 8.1  | States  | in the quark degrees of freedom                                              | 58 |
|   | 8.2  | States  | in the flux tube degrees of freedom                                          | 58 |
|   | 8.3  | Analos  | gs of DNA, RNA, aminoacids, and of translation and transcription mechanisms  | 59 |
|   | 8.4  | Under   | standing the symmetries of the code                                          | 59 |
|   | 8.5  | Some    | comments about the physics behind the code                                   | 60 |
|   |      |         |                                                                              |    |

#### Abstract

Nuclear string hypothesis is one of the most dramatic almost-predictions of TGD. The hypothesis in its original form assumes that nucleons inside nucleus form closed nuclear strings with neighboring nuclei of the string connected by exotic meson bonds consisting of color magnetic flux tube with quark and anti-quark at its ends. The lengths of flux tubes correspond to the p-adic length scale of electron and therefore the mass scale of the exotic mesons is around 1 MeV in accordance with the general scale of nuclear binding energies. The long lengths of em flux tubes increase the distance between nucleons and reduce Coulomb repulsion. A fractally scaled up variant of ordinary QCD with respect to p-adic length scale would be in question and the usual wisdom about ordinary pions and other mesons as the origin of nuclear force would be simply wrong in TGD framework as the large mass scale of ordinary pion indeed suggests.

#### 1. A > 4 nuclei as nuclear strings consisting of $A \leq 4$ nuclei

#### In this article a more refined version of nuclear string hypothesis is developed.

a) It is assumed <sup>4</sup>He nuclei and A < 4 nuclei and possibly also nucleons appear as basic building blocks of nuclear strings.  $A \leq 4$  nuclei in turn can be regarded as strings of nucleons. Large number of stable lightest isotopes of form A = 4n supports the hypothesis that the number of <sup>4</sup>He nuclei is maximal. Even the weak decay characteristics might be reduced to those for A < 4 nuclei using this hypothesis.

b) One can understand the behavior of nuclear binding energies surprisingly well from the assumptions that total *strong* binding energy associated with  $A \leq 4$  building blocks is *additive* for nuclear strings.

c) In TGD framework tetra-neutron is interpreted as a variant of alpha particle obtained by replacing two meson-like stringy bonds connecting neighboring nucleons of the nuclear string with their negatively charged variants. For heavier nuclei tetra-neutron is needed as an additional building brick.

#### 2. Bose-Einstein condensation of color bonds as a mechanism of nuclear binding

The attempt to understand the variation of the nuclear binding energy and its maximum for Fe leads to a quantitative model of nuclei lighter than Fe as color bound Bose-Einstein condensates of pion like colored states associated with color flux tubes connecting <sup>4</sup>He nuclei. The color contribution to the total binding energy is proportional to  $n^2$ , where n is the number of color bonds. Fermi statistics explains the reduction of  $E_B$  for the nuclei heavier than Fe. Detailed estimate favors harmonic oscillator model over free nucleon model with oscillator strength having interpretation in terms of string tension.

Fractal scaling argument allows to understand  ${}^{4}He$  and lighter nuclei as strings of nucleons with nucleons bound together by color bonds. Three fractally scaled variants of QCD corresponding A > 4, A = 4, and A < 4 nuclei are involved. The binding energies of also  $A \leq 4$  are predicted surprisingly accurately by applying simple p-adic scaling to the model of binding energies of heavier nuclei.

#### 3. Giant dipole resonance as de-coherence of Bose-Einstein condensate of color bonds

Giant resonances and so called pygmy resonances are interpreted in terms of de-coherence of the Bose-Einstein condensates associated with  $A \leq 4$  nuclei and with the nuclear string formed from  $A \leq 4$  nuclei. The splitting of the Bose-Einstein condensate to pieces costs a precisely defined energy. For <sup>4</sup>He de-coherence the model predicts singlet line at 12.74 MeV and triplet at ~ 27 MeV spanning 4 MeV wide range.

The de-coherence at the level of nuclear string predicts 1 MeV wide bands 1.4 MeV above the basic lines. Bands decompose to lines with precisely predicted energies. Also these contribute to the width. The predictions are in rather good agreement with experimental values. The so called pygmy resonance appearing in neutron rich nuclei can be understood as a decoherence for A = 3 nuclei. A doublet at ~ 8 MeV and MeV spacing is predicted. The prediction for the position is correct. 4. Dark nuclear strings as analogs of as analogs of DNA-, RNA- and amino-acid sequences and baryonic realization of genetic code

A speculative picture proposing a connection between homeopathy, water memory, and phantom DNA effect is discussed and on basis of this connection a vision about how the tqc hardware represented by the genome is actively developed by subjecting it to evolutionary pressures represented by a virtual world representation of the physical environment. The speculation inspired by this vision is that genetic code as well as DNA-, RNA- and aminoacid sequences should have representation in terms of nuclear strings. The model for dark baryons indeed leads to an identification of these analogs and the basic numbers of genetic code including also the numbers of aminoacids coded by a given number of codons are predicted correctly. Hence it seems that genetic code is universal rather than being an accidental outcome of the biological evolution.

# 1 Introduction

Nuclear string hypothesis [F8] is one of the most dramatic almost-predictions of TGD [4]. The hypothesis in its original form assumes that nucleons inside nucleus organize to closed nuclear strings with neighboring nuclei of the string connected by exotic meson bonds consisting of color magnetic flux tube with quark and anti-quark at its ends. The lengths of flux tubes correspond to the p-adic length scale of electron and therefore the mass scale of the exotic mesons is around 1 MeV in accordance with the general scale of nuclear binding energies. The long lengths of em flux tubes increase the distance between nucleons and reduce Coulomb repulsion. A fractally scaled up variant of ordinary QCD with respect to p-adic length scale would be in question and the usual wisdom about ordinary pions and other mesons as the origin of nuclear force would be simply wrong in TGD framework as the large mass scale of ordinary pion indeed suggests. The presence of exotic light mesons in nuclei has been proposed also by Illert [21] based on evidence for charge fractionization effects in nuclear decays.

#### 1.1 A > 4 nuclei as nuclear strings consisting of $A \le 4$ nuclei

In the sequel a more refined version of nuclear string hypothesis is developed.

- 1. The first refinement of the hypothesis is that  ${}^{4}He$  nuclei and A < 4 nuclei and possibly also nucleons appear as basic building blocks of nuclear strings instead of nucleons which in turn can be regarded as strings of nucleons. Large number of stable lightest isotopes of form A = 4n supports the hypothesis that the number of  ${}^{4}He$  nuclei is maximal. One can hope that even also weak decay characteristics could be reduced to those for A < 4 nuclei using this hypothesis.
- 2. One can understand the behavior of nuclear binding energies surprisingly well from the assumptions that total *strong* binding energy associated with  $A \leq 4$  building blocks is *additive* for nuclear strings and that the addition of neutrons tends to reduce Coulombic energy per string length by increasing the length of the nuclear string implying increase binding energy and stabilization of the nucleus. This picture does not explain the variation of binding energy per nucleon and its maximum appearing for <sup>56</sup>Fe.
- 3. In TGD framework tetra-neutron [19, 20] is interpreted as a variant of alpha particle obtained by replacing two meson-like stringy bonds connecting neighboring nucleons of the nuclear string with their negatively charged variants [F8]. For heavier nuclei tetra-neutron is needed as an additional building brick and the local maxima of binding energy  $E_B$  per nucleon as

function of neutron number are consistent with the presence of tetra-neutrons. The additivity of magic numbers 2, 8, 20, 28, 50, 82, 126 predicted by nuclear string hypothesis is also consistent with experimental facts and new magic numbers are predicted [22, 23].

# 1.2 Bose-Einstein condensation of color bonds as a mechanism of nuclear binding

The attempt to understand the variation of the nuclear binding energy and its maximum for Fe leads to a quantitative model of nuclei lighter than Fe as color bound Bose-Einstein condensates of  ${}^{4}He$  nuclei or rather, of pion like colored states associated with color flux tubes connecting  ${}^{4}He$  nuclei. The crucial element of the model is that color contribution to the binding energy is proportional to  $n^{2}$  where n is the number of color bonds. Fermi statistics explains the reduction of  $E_{B}$  for the nuclei heavier than Fe. Detailed estimate favors harmonic oscillator model over free nucleon model with oscillator strength having interpretation in terms of string tension.

Fractal scaling argument allows to understand  ${}^{4}He$  and lighter nuclei as strings formed from nucleons with nucleons bound together by color bonds. Three fractally scaled variants of QCD corresponding A > 4 nuclei, A = 4 nuclei and A < 4 nuclei are thus involved. The binding energies of also lighter nuclei are predicted surprisingly accurately by applying simple p-adic scaling to the parameters of model for the electromagnetic and color binding energies in heavier nuclei.

### 1.3 Giant dipole resonance as de-coherence of Bose-Einstein condensate of color bonds

Giant (dipole) resonances [30, 31, 33], and so called pygmy resonances [34, 35] interpreted in terms of de-coherence of the Bose-Einstein condensates associated with  $A \leq 4$  nuclei and with the nuclear string formed from  $A \leq 4$  nuclei provide a unique test for the model. The key observation is that the splitting of the Bose-Einstein condensate to pieces costs a precisely defined energy due to the  $n^2$  dependence of the total binding energy. For <sup>4</sup>He de-coherence the model predicts singlet line at 12.74 MeV and triplet (25.48, 27.30,29.12) MeV at ~ 27 MeV spanning 4 MeV wide range which is of the same order as the width of the giant dipole resonance for nuclei with full shells.

The de-coherence at the level of nuclear string predicts 1 MeV wide bands 1.4 MeV above the basic lines. Bands decompose to lines with precisely predicted energies. Also these contribute to the width. The predictions are in a surprisingly good agreement with experimental values. The so called pygmy resonance appearing in neutron rich nuclei can be understood as a de-coherence for A = 3 nuclei. A doublet (7.520,8.4600) MeV at ~ 8 MeV is predicted. At least the prediction for the position is correct.

# 1.4 Dark nuclear strings as analogs of as analogs of DNA-, RNA- and amino-acid sequences and baryonic realization of genetic code

One biological speculations [L6] inspired by the dark matter hierarchy is that genetic code as well as DNA-, RNA- and amino-acid sequences should have representation in terms of dark nuclear strings. The model for dark baryons indeed leads to an identification of these analogs and the basic numbers of genetic code including also the numbers of aminoacids coded by a given number of codons are predicted correctly. Hence it seems that genetic code is universal rather than being an accidental outcome of the biological evolution.

# 2 Some variants of the nuclear string hypothesis

The basic assumptions of the nuclear string model could be made stronger in several testable ways. One can make several alternative hypothesis.

#### 2.1 Could linking of nuclear strings give rise to heavier stable nuclei?

Nuclear strings  $(Z_1, N_1)$  and  $(Z_2, N_2)$  could link to form larger nuclei  $(Z_1 + Z_2, N_1 + N_2)$ . If one can neglect the interactions between linked nuclei, the properties of the resulting nuclei should be determined by those of composites. Linking should however be the confining interaction forbidding the decay of the stable composite. The objection against this option is that it is difficult to characterize the constraint that strings are not allowed to touch and there is no good reason forbidding the touching.

The basic prediction would be that if the nuclei  $(Z_1, N_1)$  and  $(Z_2, N_2)$  which are stable, very long-lived, or possess exceptionally large binding energy then also the nucleus  $(Z_1 + Z_2, N_1 + N_2)$ has this property. If the linked nuclear strings are essentially free then the expectation is that the half-life of a composite of unstable nuclei is that of the shorter lived nucleus. This kind of regularity would have been probably observed long time ago.

#### 2.2 Nuclear strings as connected sums of shorter nuclear strings?

Nuclear strings can form connected sum of the shorter nuclear strings. Connected sum means that one deletes very short portions of nuclear string A and B and connects the resulting ends of string A and B together. In other words: A is inserted inside B or vice versa or A and B are cut to open strings and connected and closed again. This outcome would result when A and B touch each other at some point. If touching occurs at several points more complex fusion of nuclei to a larger nucleus to a composite occurs with piece of A followed by a piece of B followed... For this option there is a non-trivial interaction between strings and the properties of nuclei need not be simply additive but one might still hope that stable nuclei fuse to form stable nuclei. In particular, the prediction for the half-life based on binding by linking does not hold true anymore.

Classical picture would suggest that the two strings cannot rotate with respect to each other unless they correspond to rather simple symmetric configurations: this applies also to linked strings. If so then the relative angular momentum L of nuclear strings vanishes and total angular momentum J of the resulting nucleus satisfies  $|J_1 - J_2| \leq J \leq J_1 + J_2$ .

#### 2.3 Is knotting of nuclear strings possible?

One can consider also the knotting of nuclear strings as a mechanism giving rise to exotic excitations of nuclear. Knots decompose to prime knots so that kind of prime nuclei identified in terms of prime knots might appear. Fractal thinking suggests an analogy with the poorly understood phenomenon of protein folding. It is known that proteins always end up to a unique highly folded configuration and one might think that also nuclear ground states correspond to unique configurations to which quantum system (also proteins would be such if dark matter is present) ends up via quantum tunnelling unlike classical system which would stick into some valley representing a state of higher energy. The spin glass degeneracy suggests an fractal landscape of ground state configurations characterized by knotting and possibly also linking.

# 3 Could nuclear strings be connected sums of alpha strings and lighter nuclear strings?

The attempt to kill the composite string model leads to a stronger formulation in which nuclear string consists of alpha particles plus a minimum number of lighter nuclei. To test the basic predictions of the model I have used the rather old tables of [25] for binding energies of stable and long-lived isotopes and more modern tables [24] for basic data about isotopes known recently.

#### 3.1 Does the notion of elementary nucleus make sense?

The simplest formulation of the model assumes some minimal set of *stable* "elementary nuclei" from which more complex *stable* nuclei can be constructed.

- 1. If heavier nuclei are formed by *linking* then alpha particle  ${}^{4}He = (Z, N) = (2, 2)$  suggests itself as the lightest stable composite allowing interpretation as a closed string. For connected sum option even single nucleon n or p can appear as a composite. This option turns out to be the more plausible one.
- 2. In the model based on linking  ${}^{6}Li = (3,3)$  and  ${}^{7}Li = (3,4)$  would also act as "elementary nuclei" as well as  ${}^{9}Be = (4,5)$  and  ${}^{10}Be = (4,6)$ . For the model based on connected sum these nuclei might be regarded as composites  ${}^{6}Li = (3,3) = (2,2) + (1,1)$ ,  ${}^{7}Li = (3,4) = (2,2) + (1,2)$ ,  ${}^{9}Be = (4,5) = 2 \times (2,2) + (0,1)$  and  ${}^{10}Be = (4,6) = (2,2) + 2 \times (1,2)$ . The study of binding energies supports the connected sum option.
- 3. <sup>10</sup>B has total nuclear spin J = 3 and <sup>10</sup>B =  $(5,5) = (3,3) + (2,2) = {}^{6}Li + {}^{4}He$  makes sense if the composites can be in relative L = 2 state  $({}^{6}Li$  has J = 1 and  ${}^{4}He$  has J = 0). <sup>11</sup>B has J = 3/2 so that <sup>11</sup>B =  $(5,6) = (3,4) + (2,2) = {}^{7}Li + {}^{4}He$  makes sense because  ${}^{7}Li$ has J = 3/2. For the model based on disjoint linking also  $10^{B}$  would be also regarded as "elementary nucleus". This asymmetry disfavors the model based on linking.

#### 3.2 Stable nuclei need not fuse to form stable nuclei

The question is whether the simplest model predicts stable nuclei which do not exist. In particular, are the linked <sup>4</sup>He composites stable? The simplest case corresponds to <sup>8</sup>B = (4, 4) = <sup>4</sup>He + <sup>4</sup>He which is not stable against alpha decay. Thus stable nuclei need not fuse to form stable nuclei. On the other hand, the very instability against alpha decay suggests that <sup>4</sup>B can be indeed regarded as composite of two alpha particles. A good explanation for the instability against alpha decay is the exceptionally large binding energy E = 7.07 MeV per nucleon of alpha particle. The fact that the binding energy per nucleon for <sup>8</sup>Be is also exceptionally large and equal to 7.06 MeV  $< E_B(^4He)$  supports the interpretation as a composite of alpha particles.

For heavier nuclei binding energy per nucleon increases and has maximum 8.78 MeV for Fe. This encourages to consider the possibility that alpha particle acts as a fundamental composite of nuclear strings with minimum number of lighter isotopes guaranteing correct neutron number. Indeed, the decomposition to a maximum number of alpha particles allows a qualitative understanding of binding energies assuming that additional contribution not larger than 1.8 MeV per nucleon is present.

The nuclei <sup>12</sup>C, <sup>16</sup>O, <sup>20</sup>Ne, <sup>24</sup>Mg, <sup>28</sup>Si, <sup>32</sup>S, <sup>36</sup>A, and <sup>40</sup>Ca are lightest stable isotopes of form  $(Z, Z) = n \times^4 He, n = 3, ..., 10$ , for which  $E_B$  is larger than for <sup>4</sup>He. For the first four nuclei  $E_B$  has a local maximum as function of N. For the remaining the maximum of  $E_B$  is obtained for (Z, Z + 1). <sup>44</sup>Ti = (22, 22) does not exist as a long-lived isotope whereas <sup>45</sup>Ti does. The addition of neutron could increase  $E_B$  by increasing the length of nuclear string and thus reducing the

Coulomb interaction energy per nucleon. This mechanism would provide an explanation also for neutron halos [18].

Also the fact that stable nuclei in general have  $N \ge Z$  supports the view that N = Z state corresponds to string consisting of alpha particles and that N > Z states are obtained by adding something between. N < Z states would necessarily contain at least one stable nucleus lighter than <sup>4</sup>He with smaller binding energy. <sup>3</sup>He is the only possible candidate as the only stable nucleus with N < Z.  $(E_B(^2H) = 1.11$  MeV and  $E_B(^3He) = 2.57$  MeV). Individual nucleons are also possible in principle but not favored. This together with increase of Coulomb interaction energy per nucleon due to the greater density of em charge per string length would explain their smaller binding energy and instability.

#### **3.3** Formula for binding energy per nucleon as a test for the model

The study of <sup>8</sup>B inspires the hypothesis that the total binding energy for the nucleus  $(Z_1 + Z_2, N_1 + N_2)$  is in the first approximation the sum of total binding energies of composites so that one would have for the binding energy per nucleon the prediction

$$E_B = \frac{A_1}{A_1 + A_2} \times E_{B_1} + \frac{A_2}{A_1 + A_2} \times E_{B_2}$$

in the case of 2-nucleus composite. The generalization to N-nucleus composite would be

$$E_B = \sum_k \frac{A_k}{\sum_r A_r} \times E_{B_k}$$

This prediction would apply also to the unstable composites. The increase of binding energy with the increase of nuclear weight indeed suggests a decomposition of nuclear string to a sequence alpha strings plus some minimum number of shorter strings.

The first objection is that for both Li, B, and Be which all having two stable isotopes, the lighter stable isotope has a slightly smaller binding energy contrary to the expectation based on additivity of the total binding energy. This can be however understood in terms of the reduction of Coulomb energy per string length resulting in the addition of neutron (protons have larger average distance along nuclear string along mediating the electric flux). The reduction of Coulomb energy per unit length of nuclear string could also partially explain why one has  $E_B > E_B(^4He)$  for heavier nuclei.

The composition  ${}^{6}Li = (3,3) = (2,2) + (1,1)$  predicts  $E_B \simeq 5.0$  MeV not too far from 5.3 MeV. The decomposition  ${}^{7}Li = (3,4) = (2,2) + (1,2)$  predicts  $E_B = 5.2$  MeV to be compared with 5.6 MeV so that the agreement is satisfactory. The decomposition  ${}^{8}Be = (4,4) = 2 \times {}^{4}He$  predicts  $E_B = 7.07$  MeV to be compared with the experimental value 7.06 MeV.  ${}^{9}Be$  and  ${}^{10}Be$  have  $E_B = 6.46$  MeV and  $E_B = 6.50$  MeV. The fact that binding energy slightly increases in addition of neutron can be understood since the addition of neutrons to  ${}^{8}Be$  reduces the Coulomb interaction energy per unit length. Also neutron spin pairing reduces  $E_B$ . The additive formula for  $E_B$  is satisfied with an accuracy better than 1 MeV also for  ${}^{10}B$  and  ${}^{11}B$ .

### 3.4 Decay characteristics and binding energies as signatures of the decomposition of nuclear string

One might hope of reducing the weak decay characteristics to those of shortest unstable nuclear strings appearing in the decomposition. Alternatively, one could deduce the decomposition from the weak decay characteristics and binding energy using the previous formulas. The picture of nucleus as a string of alpha particles plus minimum number of lighter nuclei  ${}^{3}He$  having  $E_{B} = 2.57$  MeV,  ${}^{3}H$  unstable against beta decay with half-life of 12.26 years and having  $E_{B} = 2.83$  MeV,

and  ${}^{2}H$  having  $E_{B} = 1.1$  MeV gives hopes of modelling weak decays in terms of decays for these light composites.

- 1.  $\beta^-$  decay could be seen as a signature for the presence of  ${}^{3}H$  string and alpha decay as a signature for the presence of  ${}^{4}He$  string.
- 2.  $\beta^+$  decay might be interpreted as a signature for the presence of  ${}^{3}He$  string which decays to  ${}^{3}H$  (the mass of  ${}^{3}H$  is only .018 MeV higher than that of  ${}^{3}He$ ). For instance,  ${}^{8}B = (5,3) = (3,2) + (2,1) = {}^{5}Li + {}^{3}He$  suffers  $\beta^+$  decay to  ${}^{8}Be = (4,4)$  which in turn decays by alpha emission which suggests the re-arrangement to  $(3,2) + (1,2) \rightarrow (2,2) + (2,2)$  maximizing binding energy.
- 3. Also individual nucleons can appear in the decomposition and give rise to  $\beta^-$  and possible also  $\beta^+$  decays.

#### 3.5 Are magic numbers additive?

The magic numbers 2, 8, 20, 28, 50, 82, 126 [22] for protons and neutrons are usually regarded as a support for the harmonic oscillator model. There are also other possible explanations for magic nuclei and there are deviations from the naive predictions. One can also consider several different criteria for what it is to be magic. Binding energy is the most natural criterion but need not always mean stability. For instance  ${}^{8}B = (4, 4) = {}^{4}He + {}^{4}He$  has high binding energy but is unstable against alpha decay.

Nuclear string model suggests that the fusion of magic nuclear strings by connected sum yields new kind of highly stable nuclei so that also  $(Z_1 + Z_2, N_1 + N_2)$  is a magic nucleus if  $(Z_i, N_i)$  is such. One has N = 28 = 20 + 8, 50 = 28 + 20 + 2, and  $N = 82 = 50 + 28 + 2 \times 2$ . Also other magic numbers are predicted. There is evidence for them [23].

- 1.  ${}^{16}O = (8,8)$  and  ${}^{40}Ca = (20,20)$  corresponds to doubly magic nuclei and  ${}^{60}Ni = (28,32) = (20,20) + (8,8) + {}^{4}n$  has a local maximum of binding energy as function of neutron number. This is not true for  ${}^{56}Ni$  so that the idea of magic nucleus in neutron sector is not supported by this case. The explanation would be in terms of the reduction of  $E_B$  due to the reduction of Coulomb energy per string length as neutrons are added.
- 2. Also  ${}^{80}Kr = (36, 44) = (36, 36) + {}^{4}n = (20, 20) + (8, 8) + (8, 8) + {}^{4}n$  corresponds to a local maximum of binding energy per nucleon as also does  ${}^{84}Kr = {}^{80}Kr + {}^{4}n$  containing two tetra-neutrons. Note however that  ${}^{88}Zr = (40, 48)$  is not a stable isotope although it can be regarded as a composite of doubly magic nucleus and of two tetra-neutrons.

## 3.6 Stable nuclei as composites of lighter nuclei and necessity of tetraneutron?

The obvious test is to look whether stable nuclei can be constructed as composites of lighter ones. In particular, one can check whether tetra-neutron  ${}^4n$  interpreted as a variant of alpha particle obtained by replacing two meson-like stringy bonds connecting neighboring nucleons of the nuclear string with their negatively charged variants is necessary for the understanding of heavier nuclei.

1.  ${}^{48}Ca = (20, 28)$  with half-life  $> 2 \times 10^{16}$  years has neutron excess of 8 units and the only reasonable interpretation seems to be as a composite of the lightest stable Ca isotope Ca(20, 20), which is doubly magic nucleus and two tetra-neutrons:  ${}^{48}Ca = (20, 28) = {}^{40}Ca + 2 \times {}^{4}n$ .

2. The next problematic nucleus is  ${}^{49}Ti$ .

i)  ${}^{49}Ti = (22, 27)$  having neutron excess of 5 one cannot be expressed as a composite of lighter nuclei unless one assumes non-vanishing and large relative angular momentum for the composites. For  ${}^{50}Ti = (22, 28)$  no decomposition can be found. The presence of tetraneutron would reduce the situation to  ${}^{49}Ti = (22, 27) = {}^{45}Ti + {}^{4}n$ . Note that  ${}^{45}Ti$  is the lightest Ti isotope with relatively long half-life of 3.10 hours so that the addition of tetraneutron would stabilize the system since Coulomb energy per length of string would be reduced.

ii)  ${}^{48}Ti$  could not involve tetra-neutron by this criterion. It indeed allows decomposition to standard nuclei is also possible as  ${}^{48}Ti = (22, 26) = {}^{41}K + {}^{7}Li$ .

iii) The heaviest stable Ti isotope would have the decomposition  ${}^{50}Ti = {}^{46}Ti + {}^{4}n$ , where  ${}^{46}Ti$  is the lightest stable Ti isotope.

- 3. The heavier stable nuclei  ${}^{50+k}V = (23, 27 + k), k = 0, 1, {}^{52+k}Cr = (24, 28 + k), k = 0, 1, 2, {}^{55}Mn = (25, 30)$  and  ${}^{56+k}Fe = (26, 30 + k), k = 0, 1, 2$  would have similar interpretation. The stable isotopes  ${}^{50}Cr = (24, 26)$  and  ${}^{54}Fe = (26, 28)$  would not contain tetra-neutron. Also for heavier nuclei both kinds of stable states appear and tetra-neutron would explain this.
- 4.  $^{112}Sn = (50, 62) = (50, 50) + 3 \times^4 n$ ,  $^{116}Sn$ ,  $^{120}Sn$ , and  $^{124}Sn$  are local maxima of  $E_B$  as a function of neutron number and the interpretation in terms of tetra-neutrons looks rather natural. Note that Z = 50 is a magic number.

Nuclear string model looks surprisingly promising and it would be interesting to compare systematically the predictions for  $E_B$  with its actual values and look whether the beta decays could be understood in terms of those of composites lighter than  ${}^4He$ .

#### 3.7 What are the building blocks of nuclear strings?

One can also consider several options for the more detailed structure of nuclear strings. The original model assumed that proton and neutron are basic building blocks but this model is too simple.

#### 3.7.1 Option Ia)

A more detailed work in attempt to understand binding energies led to the idea that there is fractal structure involved. At the highest level the building blocks of nuclear strings are  $A \leq 4$  nuclei. These nuclei in turn would be constructed as short nuclear strings of ordinary nucleons.

The basic objection against the model is the experimental absence of stable n - n bound state analogous to deuteron favored by lacking Coulomb repulsion and attractive electromagnetic spinspin interaction in spin 1 state. Same applies to tri-neutron states and possibly also tetra-neutron state. There has been however speculation about the existence of di-neutron and poly-neutron states [27, 28].

The standard explanation is that strong force couples to strong isospin and that the repulsive strong force in nn and pp states makes bound states of this kind impossible. This force, if really present, should correspond to shorter length scale than the isospin independent forces in the model under consideration. In space-time description these forces would correspond to forces mediated between nucleons along the space-time sheet of the nucleus whereas exotic color forces would be mediated along the color magnetic flux tubes having much longer length scale. Even for this option one cannot exclude exotic di-neutron obtained from deuteron by allowing color bond to carry negative em charge. Since em charges 0, 1, -1 are possible for color bonds, a nucleus with mass number A > 2 extends to a multiplet containing 3A exotic charge states.

#### **3.7.2** Option Ib)

One might ask whether it is possible to get rid of isospin dependent strong forces and exotic charge states in the proposed framework. One can indeed consider also other explanations for the absence of genuine poly-neutrons.

- 1. The formation of negatively charged bonds with neutrons replaced by protons would minimize both nuclear mass and Coulomb energy although binding energy per nucleon would be reduced and the increase of neutron number in heavy nuclei would be only apparent.
- 2. The strongest hypothesis is that mass minimization forces protons and negatively charged color bonds to serve as the basic building bricks of all nuclei. If this were the case, deuteron would be a di-proton having negatively charged color bond. The total binding energy would be only 2.222 1.293 = .9290 MeV. Di-neutron would be impossible for this option since only one color bond can be present in this state.

The small mass difference  $m({}^{3}He) - m({}^{3}H) = .018$  MeV would have a natural interpretation as Coulomb interaction energy. Tri-neutron would be allowed. Alpha particle would consist of four protons and two negatively charged color bonds and the actual binding energy per nucleon would be by  $(m_n - m_p)/2$  smaller than believed. Tetra-neutron would also consist of four protons and the binding energy per nucleon would be smaller by  $m_n - m_p$  than what obtains in the standard model of nucleus. Beta decays would be basically beta decays of exotic quarks associated with color bonds.

Note that the mere assumption that the di-neutrons appearing inside nuclei have protons as building bricks means a rather large apparent binding energy this might explain why di-neutrons have not been detected. An interesting question is whether also higher n-deuteron states than  ${}^{4}He$ consisting of strings of deuteron nuclei and other  $A \leq 3$  nuclei could exist and play some role in the nuclear physics of  $Z \neq N$  nuclei.

If protons are the basic building bricks, the binding energy per nucleon is replaced in the calculations with its actual value

$$E_B \rightarrow E_B - \frac{N}{A}\Delta m$$
,  $\Delta m = m_n - m_p = 1.2930 \ MeV$ . (1)

This replacement does not affect at all the parameters of the of Z = 2n nuclei identified as  ${}^{4}He$  strings.

One can of course consider also the option that nuclei containing ordinary neutrons are possible but that are unstable against beta decay to nuclei containing only protons and negatively charged bonds. This would suggest that di-neutron exists but is not appreciably produced in nuclear reactions and has not been therefore detected.

#### 3.7.3 Options IIa) and IIb)

It is not clear whether the fermions at the ends of color bonds are exotic quarks or leptons. Leptopion (or electro-pion) hypothesis [F7] was inspired by the anomalous  $e^+e^-$  production in heavy ion collisions near Coulomb wall and states that electro-pions which are bound states of colored excitations of electrons with ground state mass 1.062 MeV are responsible for the effect. The model predicts that also other charged leptons have color excitations and give rise to exotic counterpart of QCD.

Also  $\mu$  and  $\tau$  should possess colored excitations. About fifteen years after this prediction was made, direct experimental evidence for these states finally emerges [16, 17]. The mass of the new particle, which is either scalar or pseudoscalar, is 214.4 MeV whereas muon mass is 105.6 MeV.

The mass is about 1.5 per cent higher than two times muon mass. The most natural TGD inspired interpretation is as a pion like bound state of colored excitations of muon completely analogous to lepto-pion (or rather, electro-pion) [F7].

One cannot exclude the possibility that the fermion and anti-fermion at the ends of color flux tubes connecting nucleons are actually colored leptons although the working hypothesis is that they are exotic quark and anti-quark. One can of course also turn around the argument: could it be that lepto-pions are "leptonuclei", that is bound states of ordinary leptons bound by color flux tubes for a QCD in length scale considerably shorter than the p-adic length scale of lepton.

Scaling argument applied to ordinary pion mass suggests that the masses of exotic quarks at the ends of color bonds are considerably below MeV scale. One can however consider the possibility that colored electrons with mass of ordinary electron are in question in which case color bonds identifiable as colored variants of electro-pions could be assumed to contribute in the first guess the mass  $m(\pi) = 1.062$  MeV per each nucleon for A > 2 nuclei. This implies the general replacement

$$E_B \rightarrow E_B + m(\pi_L) - \frac{N}{A} \Delta m \text{ for } A > 2 ,$$
  

$$E_B \rightarrow E_B + \frac{m(\pi_L)}{2} - \frac{N}{A} \Delta m \text{ for } A = 2 .$$
(2)

This option will be referred to as option IIb). One can also consider the option IIa) in which nucleons are ordinary but lepto-pion mass  $m(\pi_L) = 1.062$  MeV gives the mass associated with color bond.

These options are equivalent for N = Z = 2n nuclei with A > 4 but for  $A \le 4$  nuclei assumed to form nucleon string they options differ.

# 4 Light nuclei as color bound Bose-Einstein condensates of ${}^{4}He$ nuclei

The attempt to understand the variation of nuclear binding energy and its maximum for Fe leads to a model of nuclei lighter than Fe as color bound Bose-Einstein condensates of  ${}^{4}He$  nuclei or meson-like structures associated with them. Fractal scaling argument allows to understand  ${}^{4}He$  itself as analogous state formed from nucleons.

#### 4.1 How to explain the maximum of $E_B$ for iron?

The simplest model predicts that the binding energy per nucleon equals to  $E_B(^4He)$  for all Z = N = 2n nuclei. The actual binding energy grows slowly, has a maximum at  ${}^{52}Fe$ , and then begins to decrease but remains above  $E_B(^4He)$ . The following values give representative examples for Z = N nuclei.

| nucleus   | $^{4}He$ | $^{8}Be$ | $^{40}Ca$ | $^{5}2Fe$ |
|-----------|----------|----------|-----------|-----------|
| $E_B/MeV$ | 7.0720   | 7.0603   | 8.5504    | 8.6104    |

For nuclei heavier than Fe there are no long-lived Z = N = 2n isotopes and the natural reason would be alpha decay to  ${}^{52}Fe$ . If tetra-neutron is what TGD suggests it to be one can guess that tetra-neutron mass is very nearly equal to the mass of the alpha particle. This would allow to regard states N = Z + 4n as states as analogous to unstable states  $N_1 = Z_1 = Z + 2n$  consisting of alpha particles. This gives estimate for  $E_B$  for unstable N = Z states. For  ${}^{256}Fm = (100, 156)$  one has  $E_B = 7.433$  MeV which is still above  $E_B({}^4He) = 7.0720$  MeV. The challenge is to understand the variation of the binding energy per nucleon and its maximum for Fe.

# 4.2 Scaled up QCD with Bose-Einstein condensate of ${}^{4}He$ nuclei explains the growth of $E_{B}$

The first thing to come in mind is that repulsive Coulomb contribution would cause the variation of the binding energy. Since alpha particles are building blocks for Z = N nuclei, <sup>8</sup>Be provides a test for this idea. If the difference between binding energies per nucleon for <sup>8</sup>Be and <sup>4</sup>He were due to Coulomb repulsion alone, one would have  $E_c = E_B(^4He) - E_B(^8Be) = .0117$  MeV, which is of order  $\alpha_{em}/L(127)$ . This would conform with the idea that flux tubes mediating em interaction have length of order electron Compton length. Long flux tubes would provide the mechanism minimizing Coulomb energy. A more realistic interpretation consistent with this mechanism would be that Coulombic and color interaction energies compensate each other: this can of course occur to some degree but it seems safe to assume that Coulomb contribution is small.

The basic question is how one could understand the behavior of  $E_B$  if its variation corresponds to that for color binding energy per nucleon. The natural scale of energy is MeV and this conforms with the fact that the range of variation for color binding energy associated with L(127) QCD is about 1.5 MeV. By a naive scaling the value of  $M_{127}$  pion mass is by a factor  $2^{(127-107)/2} = 10^{-3}$ times smaller than that of ordinary pion and thus .14 MeV. The scaling of QCD  $\Lambda$  is a more reliable estimate for the binding energy scale and gives a slightly larger value but of the same order of magnitude. The total variation of  $E_B$  is large in the natural energy scale of  $M_{127}$  QCD and suggests strong non-linear effects.

In the absence of other contributions em and color contributions to  $E_B$  cancel for  ${}^8Be$ . If color and Coulomb contributions on total binding energy depend roughly linearly on the number of  ${}^4He$ nuclei, the cancellation to  $E_B$  should occur in a good approximation also for them. This does not happen which means that color contribution to  $E_B$  is in lowest approximation linear in n meaning  $n^2$ -dependence of the total color binding energy. This non-linear behavior suggests strongly the presence of Bose-Einstein condensate of  ${}^4He$  nuclei or structures associated with them. The most natural candidates are the meson like colored strings connecting  ${}^4He$  nuclei together.

The additivity of n color magnetic (and/or electric) fluxes would imply that classical field energy is  $n^2$ -fold. This does not yet imply same for binding energy unless the value of  $\alpha_s$  is negative which it can be below confinement length scale. An alternative interpretation could be in terms of color magnetic interaction energy. The number of quarks and anti-quarks would be proportional to n as would be also the color magnetic flux so that  $n^2$ - proportionality would result also in this manner.

If the addition of single alpha particle corresponds to an addition of a constant color contribution  $E_s$  to  $E_B$  (the color binding energy per nucleon, not the total binding energy!) one has  $E_B({}^{52}Fe) = E_B({}^{4}He) + 13E_s$  giving  $E_s = .1834$  MeV, which conforms with the order of magnitude estimate given by  $M_{127}$  QCD.

The task is to find whether this picture could explain the behavior of  $E_B$ . The simplest formula for  $E_B(Z = N = 2n)$  would be given by

$$E_B(n) = -\frac{n(n-1)}{L(A)n}k_s + nE_s .$$
 (3)

Here the first term corresponds to the Coulomb interaction energy of  $n^{4}He$  nuclei proportional to n(n-1) and inversely proportional to the length L(A) of nuclear string. Second term is color binding energy per nucleon proportional to n.

The simplest assumption is that each  ${}^{4}He$  corresponds always to same length of nuclear string so that one has  $L \propto A$  and one can write

$$E_B(n) = E_B(^4He) - \frac{n(n-1)}{n^2}E_c + nE_s \quad . \tag{4}$$

The value of  $E_B(^8Be) \simeq E_B(^4He)$  (n=2) gives for the unit of Coulomb energy

$$E_c = 4E_s + 2[E_B(^4He) - E_B(^8Be)] \simeq 4E_s$$
 (5)

The general formula for the binding energy reads as

$$E_B(n) = E_B({}^{4}He) - 2\frac{n(n-1)}{n^2} [E_B({}^{4}He) - E_B({}^{8}Be)] + [-4\frac{n(n-1)}{n^2} + n]E_s .$$
(6)

The condition that  $E_B({}^{52}Fe)$  (n = 13) comes out correctly gives

$$E_s = \frac{13}{121} (E_B({}^{52}Fe) - E_B({}^{4}He)) + \frac{13 \times 24}{121} [E_B({}^{4}He) - E_B({}^{8}Be)] .$$
(7)

This gives  $E_s \simeq .1955$  MeV which conforms with  $M_{127}$  QCD estimate. For the  $E_c$  one obtains  $E_c = 1.6104$  MeV and for Coulomb energy of <sup>4</sup>He nuclei in <sup>8</sup>Be one obtains  $E = E_c/2 = .8052$  MeV. The order of magnitude is consistent with the mass difference of proton and neutron. The scale suggests that electromagnetic flux tubes are shorter than color flux tubes and correspond to the secondary p-adic length scale  $L(2, 61) = L(127)/2^{5/2}$  associated with Mersenne prime  $M_{61}$ . The scaling factor for the energy scale would be  $2^{5/2} \simeq 5.657$ .

The calculations have been carried out without assuming which are actual composites of  ${}^{4}He$  nuclei (neutrons and protons plus neutral color bonds or protons and neutral and negatively charged color bonds) and assuming the masses of color bonds are negligible. As a matter fact, the mass of color bond does not affect the estimates if one uses only nuclei heavier than  ${}^{4}He$  to estimate the parameters. The estimates above however involve  ${}^{4}He$  so that small change on the parameters is induced.

#### 4.3 Why $E_B$ decreases for heavier nuclei?

The prediction that  $E_B$  increases as  $(A/4)^2$  for Z = N nuclei is unrealistic since  $E_B$  decreases slowly for  $A \ge 52$  nuclei. Fermi statistics provides a convincing explanation assuming that fermions move in an effective harmonic oscillator potential due to the string tension whereas free nucleon model predicts too large size for the nucleus. The splitting of the Bose-Einstein condensate to pieces is second explanation that one can imagine but fails at the level of details.

#### 4.3.1 Fermi statistics as a reason for the reduction of the binding energy

The failure of the model is at least partially due to the neglect of the Fermi statistics. For the lighter nuclei description as many boson state with few fermions is expected to work. As the length of nuclear string grows in fixed nuclear volume, the probability of self intersection increases and Fermi statistics forces the wave function for stringy configurations to wiggle which reduces binding energy.

1. For the estimation purposes consider A = 256 nucleus  ${}^{256}Mv$  having Z = 101 and  $E_B = 7.4241$  MeV. Assume that this unstable nucleus is nearly equivalent with a nucleus consisting of n = 64  ${}^{4}He$  nuclei (Z = N). Assuming single color condensate this would give the color contribution

$$E_s^{tot} = (Z/2)^2 \times E_s = 64^2 \times E_s$$

with color contribution to  $E_B$  equal to  $(Z/2)E_s \simeq 12.51$  MeV.

- 2. Suppose that color binding energy is cancelled by the energy of nucleon identified as kinetic energy in the case of free nucleon model and as harmonic oscillator energy in the case of harmonic oscillator model.
- 3. The number of states with a given principal quantum number n for both free nucleons in a spherical box and harmonic oscillator model is by spherical symmetry  $2n^2$  and the number of protons/neutrons for a full shell nuclei behaves as  $N_1 \simeq 2n_{max}^3/3$ . The estimate for the average energy per nucleon is given in the two cases as

$$\langle E \rangle_H = 2^{-4/3} \times N^{1/3} E_0 , \quad E_0 = \omega_0 ,$$
  
 $\langle E \rangle_F = \frac{2}{5} (\frac{3}{2})^{5/3} N^{2/3} E_0 , \quad E_0 = \frac{\pi^2}{2m_p L^2} .$  (8)

Harmonic oscillator energy  $\langle E \rangle_H$  increases as  $N^{1/3}$  and  $\langle E \rangle_F$  as  $N^{2/3}$ . Neither of these cannot win the contribution of the color binding energy increasing as N.

4. Equating this energy with the total color binding energy gives an estimate for  $E_0$  as

$$E_{0} = (2/3)^{1/3} \times Z^{-4/3} \times (Z/2)^{2} \times E_{s} ,$$
  

$$E_{0} = \frac{5}{4} (\frac{2}{3})^{5/3} \times Z^{-5/3} \times (Z/2)^{2} \times E_{s} ,$$
  

$$E_{s} = .1955 \ MeV .$$
(9)

The first case corresponds to harmonic oscillator model and second to free nucleon model.

- 5. For the harmonic oscillator model one obtains the estimate  $E_0 = \hbar \omega_0 \simeq 2.73 \ MeV$ . The general estimate for the energy scale in the harmonic oscillator model given by  $\omega_0 \simeq 41 \cdot A^{-1/3}$  MeV [29] giving  $\omega_0 = 6.5$  MeV for A = 256 (this estimate implies that harmonic oscillator energy per nucleon is approximately constant and would suggest that string tension tends to reduce as the length of string increases). Harmonic oscillator potential would have roughly twice too strong strength but the order of magnitude is correct. Color contribution to the binding energy might relate the reduction of the oscillator strength in TGD framework.
- 6. Free nucleon model gives the estimate  $E_0 = .0626$  MeV. For the size of a A = 256 nucleus one obtains  $L \simeq 3.8L(113) \simeq 76$  fm. This is by one order of magnitude larger that the size predicted by the standard formula  $r = r_0 A^{1/3}$ ,  $r_0 = 1.25$  fm and 8 fm for A = 256.

Harmonic oscillator picture is clearly favored and string tension explains the origin of the harmonic oscillator potential. Harmonic oscillator picture is expected to emerge at the limit of heavy nuclei for which nuclear string more or less fills the nuclear volume whereas for light nuclei the description in terms of bosonic  ${}^{4}He$  nuclei should make sense. For heavy nuclei Fermi statistics at nuclear level would begin to be visible and excite vibrational modes of the nuclear string mapped to the excited states of harmonic oscillator in the shell model description.

# **4.3.2** Could upper limit for the size of ${}^{4}He$ Bose-Einstein condensate explain the maximum of binding energy per nucleon?

One can imagine also an alternative explanation for why  $E_B$  to decrease after A = 52. One might that A = 52 represents the largest <sup>4</sup>He Bose-Einstein condensate and that for heavier nuclei Bose-Einstein condensate de-coheres into two parts. Bose-Einstein condensate of n = 13 <sup>4</sup>He nuclei would the best that one can achieve.

This could explain the reduction of the binding energy and also the emergence of tetra-neutrons as well as the instability of Z = N nuclei heavier than  ${}^{52}Fe$ . A number theoretical interpretation related to the p-adic length scale hypothesis suggests also itself: as the size of the tangled nuclear string becomes larger than the next p-adic length scale, Bose-Einstein condensate might lose its coherence and split into two.

If one assumes that  ${}^{4}He$  Bose-Einstein condensate has an upper size corresponding to n = 13, the prediction is that after A = 52 second Bose-Einstein condensate begins to form.  $E_B$  is obtained as the average

$$E_B(Z,N) = \frac{52}{A} E_B({}^{52}Fe) + \frac{A-52}{A} E_B({}^{A-52}X(Z,N)) \quad .$$

The derivative

$$dE_B/dA = (52/A)[-E_B(^{52}Fe) + E_B(^{A-52}X)] + \frac{A-52}{A}dE_B(^{A-52}X(Z,N))/dA$$

is first negative but its sign must change since the nuclei consisting of two copies of  ${}^{52}Fe$ ) condensates have same  $E_B$  as  ${}^{52}Fe$ ). This is an un-physical result. This does not exclude the splitting of Bose-Einstein condensate but the dominant contribution to the reduction of  $E_B$  must be due to Fermi statistics.

# 5 What QCD binds nucleons to $A \leq 4$ nuclei?

The obvious question is whether scaled variant(s) of color force could bind nucleons to form  $A \leq 4$  nuclei which in turn bind to form heavier nuclei. Since the binding energy scale for <sup>3</sup>He is much smaller than for <sup>4</sup>He one might consider the possibility that the p-adic length scale for QCD associated with <sup>4</sup>He is different from that for A < 4 nuclei.

#### 5.1 The QCD associated with nuclei lighter than ${}^{4}He$

It would be nice if one could understand the binding energies of also  $A \leq 4$  nuclei in terms of a scaled variant of QCD applied at the level of nucleons. Here one has several options to test.

#### 5.1.1 Various options to consider

Assume that neutral color bonds have negligible fermion masses at their ends: this is expected if the exotic quarks appear at the ends of color bonds and by the naive scaling of pion mass. One can also consider the possibility that the p-adic temperature for the quarks satisfies  $T = 1/n \le 1/2$ so that quarks would be massless in excellent approximation. T = 1/n < 1 holds true for gauge bosons and one might argue that color bonds as bosonic particles indeed have T < 1.

Option Ia): Building bricks are ordinary nucleons.

Opion IIa): Building blocks are protons and neutral and negatively charged color bonds. This means the replacement  $E_B \to E_B - \Delta m$  for A > 2 nuclei and  $E_B \to E_B - \Delta m/2$  for A = 2 with  $\Delta m = n_n - m_p = 1.2930$  MeV.

Options Ib and IIb are obtained by assuming that the masses of fermions at the ends of color bonds are non-negligible. Electro-pion mass  $m(\pi_L) = 1.062$  MeV is a good candidate for the mass of the color bond. Option Ia allow 3 per cent accuracy for the predicted binding energies. Option IIb works satisfactorily but the errors are below 22 per cent only.

#### 5.1.2 Option Ia): Ordinary nucleons and massless color bonds

It turns out that for the option Ia) the correct candidate for A < 4 QCD is the secondary p-adic length scale L(2, 59) associated with prime  $p \simeq 2^k$ , k = 59 with  $k_{eff} = 2 \times 59 = 118$ . The proper scaling of the electromagnetic p-adic length scale corresponds to a scaling factor  $2^3$  meaning that one has  $k_{eff} = 122 \rightarrow k_{eff} - 6 = 116 = 4 \times 29$  corresponding to L(4, 29).

#### 1. Direct p-adic scaling of the parameters

 $E_s$  would be scaled up p-adically by a factor  $2^{(127-118)/2} = 2^{9/2}$ .  $E_c$  would be scaled up by a factor  $2^{(122-116)/2} = 2^3$ . There is also a scaling of  $E_c$  by a factor 1/4 due to the reduction of charge unit and scaling of both  $E_c$  and  $E_s$  by a factor 1/4 since the basic units are now nucleons. This gives

$$\hat{E}_s = 2^{5/2} E_s = 1.1056 \ MeV \ , \ \hat{E}_c = 2^{-1} E_c = .8056 \ MeV \ .$$
 (10)

The value of electromagnetic energy unit is quite reasonable.

The basic formula for the binding energy reads now

$$E_B = -\frac{(n(p)(n(p)-1))}{A^2}\hat{E}_c + n\hat{E}_s , \qquad (11)$$

where n(p) is the number of protons n = A holds true for A > 2. For deuteron one has n = 1 since deuteron has only single color bond. This delicacy is a crucial prediction and the model fails to work without it.

This gives

$$E_B(^2H) = \hat{E}_s , \ E_B(^3H) = 3\hat{E}_s , \ E_B(^3He) = -\frac{2}{9}\hat{E}_c + 3\hat{E}_s .$$
 (12)

The predictions are given by the third row of the table below. The predicted values given are too large by about 15 per cent in the worst case.

The reduction of the value of  $\alpha_s$  in the p-adic scaling would improve the situation. The requirement that  $E_B(^{3}H)$  comes out correctly predicts a reduction factor .8520 for  $\alpha_s$ . The predictions are given in the fourth row of the table below. Errors are below 15 per cent.

| nucleus           | $^{2}H$ | $^{3}H$ | $^{3}He$ |
|-------------------|---------|---------|----------|
| $E_B(exp)/MeV$    | 1.111   | 2.826   | 2.572    |
| $E_B(pred_1)/MeV$ | 1.106   | 3.317   | 3.138    |
| $E_B(pred_2)/MeV$ | .942    | 2.826   | 2.647    |

The discrepancy is 15 per cent for  ${}^{2}H$ . By a small scaling of  $E_{c}$  the fit for  ${}^{3}He$  can be made perfect. Agreement is rather good but requires that conventional strong force transmitted along nuclear space-time sheet is present and makes nn and pp states unstable. Isospin dependent strong interaction energy would be only .17 MeV in isospin singlet state which suggests that a large cancellation between scalar and vector contributions occurs. *pnn* and *ppn* could be regarded as Dn and Dp states with no strong force between D and nucleon. The contribution of isospin dependent strong force to  $E_B$  is scaled down by a factor 2/3 in A = 3 states from that for deuteron and is almost negligible. This option seems to allow an almost perfect fit of the binding energies. Note that one cannot exclude exotic nn-state obtained from deuteron by giving color bond negative em charge.

#### 5.1.3 Other options

Consider next other options.

#### 1. Option IIb

For option IIb) the basic building bricks are protons and  $m(\pi) = 1.062$  is assumed. The basic objection against this option is that for protons as constituents *real* binding energies satisfy  $E_B(^{3}He) < E_B(^{3}H)$  whereas Coulombic repulsion would suggest  $E_B(^{3}He) > E_B(^{3}H)$  unless magnetic spin-spin interaction effects affect the situation. One can however look how good a fit one can obtain in this manner.

As found, the predictions of direct scaling are too large for  $E_B({}^{3}H)$  and  $E_B({}^{3}He)$  (slight reduction of  $\alpha_s$  cures the situation). Since the actual binding energy increases by  $m(\pi_L) - (2/3)(m_n - m_p)$ for  ${}^{3}H$  and by  $m(\pi_L) - (1/3)(m_n - m_p)$  for  ${}^{3}He$ , it is clear that the assumption that lepto-pion mass is of order 1 MeV improves the fit. The results are given by the table below.

| nucleus         | $^{2}H$ | $^{3}H$ | $^{3}He$ |
|-----------------|---------|---------|----------|
| $E_B(exp)/MeV$  | 1.111   | 2.826   | 2.572    |
| $E_B(pred)/MeV$ | .875    | 3.117   | 2.507    |

Here  $E_B(pred)$  corresponds to the effective value of binding energy assuming that nuclei effectively consist of ordinary protons and neutrons. The discrepancies are below 22 percent.

What is troublesome that neither the scaling of  $\alpha_s$  nor modification of  $E_c$  improves the situation for <sup>2</sup>*H* and <sup>3</sup>*H*. Moreover, magnetic spin-spin interaction energy for deuteron is expected to reduce  $E_B(pred)$  further in triplet state. Thus option IIb) does not look promising.

#### 2. Option Ib)

For option Ib) with  $m(\pi) = 1.062$  MeV and ordinary nucleons the actual binding  $E_B(act)$ energy increases by  $m(\pi)$  for A = 3 nuclei and by  $m(\pi)/2$  for deuteron. Direct scaling gives a reasonably good fit for the p-adic length scale L(9, 13) with  $k_{eff} = 117$  meaning  $\sqrt{2}$  scaling of  $E_s$ . For deuteron the predicted  $E_B$  is too low by 30 per cent. One might argue that isospin dependent strong force between nucleons becomes important in this p-adic length scale and reduces deuteron binding energy by 30 per cent. This option is not un-necessary complex as compared to the option Ia).

| nucleus         | $^{2}H$ | $^{3}H$ | $^{3}He$ |
|-----------------|---------|---------|----------|
| $E_B(act)/MeV$  | 1.642   | 3.880   | 3.634    |
| $E_B(pred)/MeV$ | 1.3322  | 3.997   | 3.743    |

For option IIa) with  $m(\pi) = 0$  and protons as building blocks the fit gets worse for A = 3 nuclei.

#### 5.2 The QCD associated with ${}^{4}He$

<sup>4</sup>He must somehow differ from  $A \leq 3$  nucleons. If one takes the argument based on isospin dependence strong force seriously, the reasonable looking conclusion would be that <sup>4</sup>He is at the space-time sheet of nucleons a bound state of two deuterons which induce no isospin dependent strong nuclear force. One could regard the system also as a closed string of four nucleons such that neighboring p and n form strong iso-spin singlets. The previous treatment applies as such.

For <sup>4</sup>*He* option Ia) with a direct scaling would predict  $E_B({}^4He) < 4 \times \hat{E}_s = 3.720$  MeV which is by a factor of order 2 too small. The natural explanation would be that for <sup>4</sup>*He* both color and em field body correspond to the p-adic length scale L(4, 29) ( $k_{eff} = 116$ ) so that  $E_s$  would increase by a factor of 2 to 1.860 MeV. Somewhat surprisingly,  $A \leq 3$  nuclei would have "color field bodies" by a factor 2 larger than <sup>4</sup>*He*.

- 1. For option Ia) this would predict  $E_B(^4He) = 7.32867$  MeV to be compared with the real value 7.0720 MeV. A reduction of  $\alpha_s$  by 3.5 per cent would explain the discrepancy. That  $\alpha_s$  decreases in the transition sequence  $k_{eff} = 127 \rightarrow 118 \rightarrow 116$  which is consistent with the general vision about evolution of color coupling strength.
- 2. If one assumes option Ib) with  $m(\pi) = 1.062$  MeV the actual binding energy increases to 8.13 MeV. The strong binding energy of deuteron units would give an additional .15 MeV binding energy per nucleon so that one would have  $E_B(^4He) = 7.47$  MeV so that 10 per cent accuracy is achieved. Obviously this option does not work so well as Ia).
- 3. If one assumes option IIb), the actual binding energy would increase by .415 MeV to 7.4827 MeV which would make fit somewhat poorer. A small reduction of  $E_c$  could allow to achieve a perfect fit.

### 5.3 What about tetra-neutron?

One can estimate the value of  $E_B({}^4n)$  from binding energies of nuclei (Z, N) and (Z, N + 4)(A = Z + N) as

$$E_B(^4n) = \frac{A+4}{4} [E_B(A+4) - \frac{A}{A+4} E_B(A)] .$$

In the table below there are some estimate for  $E_B(^4n)$ .

| (Z,N)          | $(26,26)({}^{52}Fe)$ | $(50,70)(^{120}Sn)$ | $(82,124)$ $(^{206}Pb)$ |
|----------------|----------------------|---------------------|-------------------------|
| $E_B(^4n)/MeV$ | 6.280                | 7.3916              | 5.8031                  |

The prediction of the above model would be  $E(^4n) = 4\hat{E}_s = 3.760$  MeV for  $\hat{E}_s = .940$  MeV associated with A < 4 nuclei and  $k_{eff} = 118 = 2 \times 59$  associated with A < 4 nuclei. For  $k_{eff} = 116$  associated with  $^4He E_s(^4n) = E_s(^4He) = 1.82$  MeV the prediction would be 7.28 MeV. 14 percent reduction of  $\alpha_s$  would give the estimated value for of  $E_s$  for  $^{52}Fe$ .

If tetra-neutron is ppnn bound state with two negatively charged color bonds, this estimate is not quite correct since the actual binding energy per nucleon is  $E_B(^4He) - (m_n - m_p)/2$ . This implies a small correction  $E_B(A + 4) \rightarrow E_B(A + 4) - 2(m_n - m_p)/(A + 4)$ . The correction is negligible.

One can make also a direct estimate of  ${}^{4}n$  binding energy assuming tetra-neutron to be ppnn bound state. If the masses of charged color bonds do not differ appreciably from those of neutral bonds (as the p-adic scaling of  $\pi + -\pi^{0}$  mass difference of about 4.9 MeV strongly suggests) then model Ia) with  $E_s = E_B({}^{3}H)/3$  implies that the actual binding energy  $E_B({}^{4}n) = 4E_s = E_B({}^{3}H)/3$  (see the table below). The apparent binding energy is  $E_{B,app} = E_B(^4n) + (m_n - m_p)/2$ . Binding energy differs dramatically from what one can imagine in more conventional models of strong interactions in which even the existence of tetra-neutron is highly questionable.

| $k_{eff}$           | $2 \times 59$ | $4 \times 29$ |
|---------------------|---------------|---------------|
| $E_B(act)(^4n)/MeV$ | 3.7680        |               |
| $E_{B,app}(4n)/MeV$ | 4.4135        | 8.1825        |

The higher binding energy per nucleon for tetra-neutron might directly relate to the neutron richness of heavy nuclei in accordance with the vision that Coulomb energy is what disfavors proton rich nuclei.

According to [26], tetra-neutron might have been observed in the decay  ${}^{8}He \rightarrow {}^{4}He + {}^{4}n$  and the accepted value for the mass of  ${}^{8}He$  isotope gives the upper bound of  $E({}^{4}n) < 3.1$  MeV, which is one half of the the estimate. One can of course consider the possibility that free tetra-neutron corresponds to L(2, 59) and nuclear tetra-neutron corresponds to the length scale L(4, 29) of  ${}^{4}He$ . Also light quarks appear as several p-adically scaled up variants in the TGD based model for low-lying hadrons and there is also evidence that neutrinos appear in several scales.

#### 5.4 What could be the general mass formula?

In the proposed model nucleus consists of  $A \leq 4$  nuclei. Concerning the details of the model there are several questions to be answered. Do  $A \leq 3$  nuclei and A = 4 nuclei <sup>4</sup>He and tetra-neutron form separate nuclear strings carrying their own color magnetic fields as the different p-adic length scale for the corresponding "color magnetic bodies" would suggest? Or do they combine by a connected sum operation to single closed string? Is there single Bose-Einstein condensate or several ones.

Certainly the Bose-Einstein condensates associated with nucleons forming A < 4 nuclei are separate from those for A = 4 nuclei. The behavior of  $E_B$  in turn can be understood if <sup>4</sup>He nuclei and tetra-neutrons form separate Bose-Einstein condensates. For Z > N nuclei poly-protons constructed as exotic charge states of stable  $A \leq 4$  nuclei could give rise to the proton excess.

Before continuing it is appropriate to list the apparent binding energies for poly-neutrons and poly-protons.

| poly-neutron    | n | $^2n$                         | $^{3}n$                        | $^4n$                          |
|-----------------|---|-------------------------------|--------------------------------|--------------------------------|
| $E_{B,app}/MeV$ | 0 | $E_B(^2H) + \frac{\Delta}{2}$ | $E_B(^3H) + \frac{2\Delta}{3}$ | $E_B(^4He) + \frac{\Delta}{2}$ |
| poly-proton     | p | $^{2}p$                       | $^{3}p$                        | $^4p$                          |
| $E_{B,app}/MeV$ | 0 | $E_B(^2H) - \frac{\Delta}{2}$ | $E_B(^3He) - \frac{\Delta}{3}$ | $E_B(^4He) - \frac{\Delta}{2}$ |

For heavier nuclei  $E_{B,app}(^4n)$  is smaller than  $E_B(^4He) + (m_p - m_n)/2$ .

The first guess for the general formula for the binding energy for nucleus (Z, N) is obtained by assuming that for maximum number of <sup>4</sup>He nuclei and tetra-neutrons/tetra-protons identified as <sup>4</sup>H nuclei with 2 negatively/positively charged color bonds are present.

#### 1. $N \ge Z$ nuclei

Even-Z nuclei with  $N \ge Z$  can be expressed as (Z = 2n, N = 2(n+k) + m), m = 0, 1, 2 or 3. For  $Z \le 26$  (only single Bose-Einstein condensate) this gives for the apparent binding energy per nucleon (assuming that all neutrons are indeed neutrons) the formula

$$E_B(2n, 2(n+k)+m) = \frac{n}{A}E_B(^4He) + \frac{k}{A}E_{B,app}(^4n) + \frac{1}{A}E_{B,app}(^mn)$$

+ 
$$\frac{n^2 + k^2}{n+k}E_s - \frac{Z(Z-1)}{A^2}E_c$$
 (13)

The situation for the odd-Z nuclei (Z, N) = (2n + 1, 2(n + k) + m) can be reduced to that for even-Z nuclei if one can assume that the  $(2n+1)^{th}$  proton combines with 2 neutrons to form  ${}^{3}He$ nucleus so that one has still 2(k-1) + m neutrons combining to  $A \leq 4$  poly-neutrons in above described manner.

#### 2. $Z \ge N$ nuclei

For the nuclei having Z > N the formation of a maximal number of <sup>4</sup>He nuclei leaves k excess protons. For long-lived nuclei  $k \leq 2$  is satisfied. One could think of decomposing the excess protons to exotic variants of  $A \leq 4$  nuclei by assuming that some charged bonds carry positive charge with an obvious generalization of the above formula.

The only differences with respect to a nucleus with neutron excess would be that the apparent binding energy is smaller than the actual one and positive charge would give rise to Coulomb interaction energy reducing the binding energy (but only very slightly). The change of the binding energy in the subtraction of single neutron from Z = N = 2n nucleus is predicted to be approximately  $\Delta E_B = -E_B(^4He)/A$ . In the case of  $^{32}S$  this predicts  $\Delta E_B = .2209$  MeV. The real value is .2110 MeV. The fact that the general order of magnitude for the change of the binding energy as Z or N changes by one unit supports the proposed picture.

#### 5.5Nuclear strings and cold fusion

To summarize, option Ia) assuming that strong isospin dependent force acts on the nuclear spacetime sheet and binds pn pairs to singlets such that the strong binding energy is very nearly zero in singlet state by the cancelation of scalar and vector contributions, is the most promising one. It predicts the existence of exotic di-, tri-, and tetra-neutron like particles and even negatively charged exotics obtained from  ${}^{2}H, {}^{3}H, {}^{3}He$ , and  ${}^{4}He$  by adding negatively charged color bond. For instance,  ${}^{3}H$  extends to a multiplet with em charges 1, 0, -1, -2. Of course, heavy nuclei with proton neutron excess could actually be such nuclei.

The exotic states are stable under beta decay for  $m(\pi) < m_e$ . The simplest neutral exotic nucleus corresponds to exotic deuteron with single negatively charged color bond. Using this as target it would be possible to achieve cold fusion since Coulomb wall would be absent. The empirical evidence for cold fusion thus supports the prediction of exotic charged states.

#### 5.5.1Signatures of cold fusion

In the following the consideration is restricted to cold fusion in which two deuterium nuclei react strongly since this is the basic reaction type studied.

- In hot fusion there are three reaction types:
- 1)  $D + D \rightarrow^4 He + \gamma$  (23.8MeV) 2)  $D + D \rightarrow^3 He + n$ 3)  $D + D \rightarrow^3 H + p$ .

The rate for the process 1) predicted by standard nuclear physics is more than  $10^{-3}$  times lower than for the processes 2) and 3) [38]. The reason is that the emission of the gamma ray involves the relatively weak electromagnetic interaction whereas the latter two processes are strong.

The most obvious objection against cold fusion is that the Coulomb wall between the nuclei makes the mentioned processes extremely improbable at room temperature. Of course, this alone implies that one should not apply the rules of hot fusion to cold fusion. Cold fusion indeed differs from hot fusion in several other aspects.

1. No gamma rays are seen.

2. The flux of energetic neutrons is much lower than expected on basis of the heat production rate an by interpolating hot fusion physics to the recent case.

These signatures can also be (and have been!) used to claim that no real fusion process occurs. It has however become clear that the isotopes of Helium and also some tritium accumulate to the Pd target during the reaction and already now prototype reactors for which the output energy exceeds input energy have been built and commercial applications are under development, see for instance [39]. Therefore the situation has turned around. The rules of standard physics do not apply so that some new nuclear physics must be involved and it has become an exciting intellectual challenge to understand what is happening. A representative example of this attitude and an enjoyable analysis of the counter arguments against fold fusion is provided by the article 'Energy transfer in cold fusion and sono-luminescence' of Julian Schwinger [40]. This article should be contrasted with the ultra-skeptical article 'ESP and Cold Fusion: parallels in pseudoscience' of V. J. Stenger [41].

Cold fusion has also other features, which serve as valuable constraints for the model building.

- 1. Cold fusion is not a bulk phenomenon. It seems that fusion occurs most effectively in nanoparticles of Pd and the development of the required nano-technology has made possible to produce fusion energy in controlled manner. Concerning applications this is a good news since there is no fear that the process could run out of control.
- 2. The ratio x of D atoms to Pd atoms in Pd particle must lie the critical range [.85, .90] for the production of  ${}^{4}He$  to occur [42]. This explains the poor repeatability of the earlier experiments and also the fact that fusion occurred sporadically.
- 3. Also the transmutations of Pd nuclei are observed [43].

Below a list of questions that any theory of cold fusion should be able to answer.

- 1. Why cold fusion is not a bulk phenomenon?
- 2. Why cold fusion of the light nuclei seems to occur only above the critical value  $x \simeq .85$  of D concentration?
- 3. How fusing nuclei are able to effectively circumvent the Coulomb wall?
- 4. How the energy is transferred from nuclear degrees of freedom to much longer condensed matter degrees of freedom?
- 5. Why gamma rays are not produced, why the flux of high energy neutrons is so low and why the production of  ${}^{4}He$  dominates (also some tritium is produced)?
- 6. How nuclear transmutations are possible?

#### 5.5.2 Could exotic deuterium make cold fusion possible?

One model of cold fusion has been already discussed in [F8] and the recent model is very similar to that. The basic idea is that only the neutrons of incoming and target nuclei can interact strongly, that is their space-time sheets can fuse. One might hope that neutral deuterium having single negatively charged color bond could allow to realize this mechanism.

1. Suppose that part of the deuterium in Pd catalyst corresponds to exotic deuterium with neutral nuclei so that cold fusion would occur between neutral exotic D nuclei in the target and charged incoming D nuclei and Coulomb wall in the nuclear scale would be absent.

2. The exotic variant of the ordinary D + D reaction yields final states in which  ${}^{4}He$ ,  ${}^{3}He$  and  ${}^{3}H$  are replaced with their exotic counterparts with charge lowered by one unit. In particular, exotic  ${}^{3}H$  is neutral and there is no Coulomb wall hindering its fusion with Pd nuclei so that nuclear transmutations can occur.

Why the neutron and gamma fluxes are low might be understood if for some reason only exotic  ${}^{3}H$  is produced, that is the production of charged final state nuclei is suppressed. The explanation relies on Coulomb wall at the nucleon level.

- 1. Initial state contains one charged and one neutral color bond and final state A = 3 or A = 4 color bonds. Additional neutral color bonds must be created in the reaction (one for the production A = 3 final states and two for A = 4 final state). The process involves the creation of neural fermion pairs. The emission of one exotic gluon per bond decaying to a neutral pair is necessary to achieve this. This requires that nucleon space-time sheets fuse together. Exotic D certainly belongs to the final state nucleus since charged color bond is not expected to be split in the process.
- 2. The process necessarily involves a temporary fusion of nucleon space-time sheets. One can understand the selection rules if only neutron space-time sheets can fuse appreciably so that only  ${}^{3}H$  would be produced. Here Coulomb wall at nucleon level should enter into the game.
- 3. Protonic space-time sheets have the same positive sign of charge always so that there is a Coulomb wall between them. This explains why the reactions producing exotic  ${}^{4}He$  do not occur appreciably. If the quark/antiquark at the neutron end of the color bond of ordinary D has positive charge, there is Coulomb attraction between proton and corresponding negatively charged quark. Thus energy minimization implies that the neutron space-time sheet of ordinary D has positive net charge and Coulomb repulsion prevents it from fusing with the proton space-time sheet of target D. The desired selection rules would thus be due to Coulomb wall at the nucleon level.

#### 5.5.3 About the phase transition transforming ordinary deuterium to exotic deuterium

The exotic deuterium at the surface of Pd target seems to form patches (for a detailed summary see [F8]). This suggests that a condensed matter phase transition involving also nuclei is involved. A possible mechanism giving rise to this kind of phase would be a local phase transition in the Pd target involving both D and Pd. In [F8] it was suggested that deuterium nuclei transform in this phase transition to "ordinary" di-neutrons connected by a charged color bond to Pd nuclei. In the recent case di-neutron could be replaced by neutral D.

The phase transition transforming neutral color bond to a negatively charged one would certainly involve the emission of  $W^+$  boson, which must be exotic in the sense that its Compton length is of order atomic size so that it could be treated as a massless particle and the rate for the process would be of the same order of magnitude as for electro-magnetic processes. One can imagine two options.

- 1. Exotic  $W^+$  boson emission generates a positively charged color bond between Pd nucleus and exotic deuteron as in the previous model.
- 2. The exchange of exotic  $W^+$  bosons between ordinary D nuclei and Pd induces the transformation  $Z \to Z + 1$  inducing an alchemic phase transition  $Pd \to Ag$ . The most abundant Pd isotopes with A = 105 and 106 would transform to a state of same mass but chemically equivalent with the two lightest long-lived Ag isotopes.  ${}^{106}Ag$  is unstable against  $\beta^+$  decay to Pd and  ${}^{105}Ag$  transforms to Pd via electron capture. For  ${}^{106}Ag$  ( ${}^{105}Ag$ ) the rest energy

is 4 MeV (2.2 MeV) higher than for  ${}^{106}Pd$  ( ${}^{105}Pd$ ), which suggests that the resulting silver cannot be genuine.

This phase transition need not be favored energetically since the energy loaded into electrolyte could induce it. The energies should (and could in the recent scenario) correspond to energies typical for condensed matter physics. The densities of Ag and Pd are 10.49 gcm<sup>-3</sup> and 12.023 gcm<sup>-3</sup> so that the phase transition would expand the volume by a factor 1.0465. The porous character of Pd would allow this. The needed critical packing fraction for Pd would guarantee one D nucleus per one Pd nucleus with a sufficient accuracy.

#### 5.5.4 Exotic weak bosons seem to be necessary

The proposed phase transition cannot proceed via the exchange of the ordinary W bosons. Rather, W bosons having Compton length of order atomic size are needed. These W bosons could correspond to a scaled up variant of ordinary W bosons having smaller mass, perhaps even of the order of electron mass. They could be also dark in the sense that Planck constant for them would have the value  $\hbar = n\hbar_0$  implying scaling up of their Compton size by n. For  $n \sim 2^{48}$  the Compton length of ordinary W boson would be of the order of atomic size so that for interactions below this length scale weak bosons would be effectively massless. p-Adically scaled up copy of weak physics with a large value of Planck constant could be in question. For instance, W bosons could correspond to the nuclear p-adic length scale L(k = 113) and  $n = 2^{11}$ .

Few weeks after having written this chapter I learned that cold fusion is in news again: both Nature and New Scientists commented the latest results [44]. It seems that the emission of highly energetic charged particles which cannot be due to chemical reactions and could emerge from cold fusion has been demonstrated beyond doubt by Frank Cordon's team [45] using detectors known as CR-39 plastics of size scale of coin used already earlier in hot fusion research. The method is both cheap and simple. The idea is that travelling charged particles shatter the bonds of the plastic's polymers leaving pits or tracks in the plastic. Under the conditions claimed to make cold fusion possible (1 deuterium per 1 Pd nucleus making in TGD based model possible the phase transition of D to its neutral variant by the emission of exotic dark W boson with interaction range of order atomic radius) tracks and pits appear during short period of time to the detector.

#### 5.6 Strong force as a scaled and dark electro-weak force?

The fiddling with the nuclear string model has led to following conclusions.

- 1. Strong isospin dependent nuclear force, which does not reduce to color force, is necessary in order to eliminate polyneutron and polyproton states. This force contributes practically nothing to the energies of bound states. This can be understood as being due to the cancellation of isospin scalar and vector parts of this force for them. Only strong isospin singlets and their composites with isospin doublet (n,p) are allowed for  $A \leq 4$  nuclei serving as building bricks of the nuclear strings. Only *effective* polyneutron states are allowed and they are strong isospin singlets or doublets containing charged color bonds.
- 2. The force could act in the length scalar of nuclear space-time sheets: k = 113 nuclear padic length scale is a good candidate for this length scale. One must be however cautious: the contribution to the energy of nuclei is so small that length scale could be much longer and perhaps same as in case of exotic color bonds. Color bonds connecting nuclei correspond to much longer p-adic length scale and appear in three p-adically scaled up variants corresponding to A < 4 nuclei, A = 4 nuclei and A > 4 nuclei.

3. The prediction of exotic deuterons with vanishing nuclear em charge leads to a simplification of the earlier model of cold fusion explaining its basic selection rules elegantly but requires a scaled variant of electro-weak force in the length scale of atom.

What is then this mysterious strong force? And how abundant these copies of color and electroweak force actually are? Is there some unifying principle telling which of them are realized?

From foregoing plus TGD inspired model for quantum biology involving also dark and scaled variants of electro-weak and color forces it is becoming more and more obvious that the scaled up variants of both QCD and electro-weak physics appear in various space-time sheets of TGD Universe. This raises the following questions.

- 1. Could the isospin dependent strong force between nucleons be nothing but a p-adically scaled up (with respect to length scale) version of the electro-weak interactions in the p-adic length scale defined by Mersenne prime  $M_{89}$  with new length scale assigned with gluons and characterized by Mersenne prime  $M_{107}$ ? Strong force would be electro-weak force but in the length scale of hadron! Or possibly in length scale of nucleus ( $k_{eff} = 107 + 6 = 113$ ) if a dark variant of strong force with  $h = nh_0 = 2^3h_0$  is in question.
- 2. Why shouldn't there be a scaled up variant of electro-weak force also in the p-adic length scale of the nuclear color flux tubes?
- 3. Could it be that all Mersenne primes and also other preferred p-adic primes correspond to entire standard model physics including also gravitation? Could be be kind of natural selection which selects the p-adic survivors as proposed long time ago?

Positive answers to the last questions would clean the air and have quite a strong unifying power in the rather speculative and very-many-sheeted TGD Universe.

- 1. The prediction for new QCD type physics at  $M_{89}$  would get additional support. Perhaps also LHC provides it within the next half decade.
- 2. Electro-weak physics for Mersenne prime  $M_{127}$  assigned to electron and exotic quarks and color excited leptons would be predicted. This would predict the exotic quarks appearing in nuclear string model and conform with the 15 year old leptohadron hypothesis [F7].  $M_{127}$  dark weak physics would also make possible the phase transition transforming ordinary deuterium in Pd target to exotic deuterium with vanishing nuclear charge.

The most obvious objection against this unifying vision is that hadrons decay only according to the electro-weak physics corresponding to  $M_{89}$ . If they would decay according to  $M_{107}$  weak physics, the decay rates would be much much faster since the mass scale of electro-weak bosons would be reduced by a factor  $2^{-9}$  (this would give increase of decay rates by a factor  $2^{36}$  from the propagator of weak boson). This is however not a problem if strong force is a dark with say n = 8giving corresponding to nuclear length scale. This crazy conjecture might work if one accepts the dark Bohr rules!

# 6 Giant dipole resonance as a dynamical signature for the existence of Bose-Einstein condensates?

The basic characteristic of the Bose-Einstein condensate model is the non-linearity of the color contribution to the binding energy. The implication is that the the de-coherence of the Bose-Einstein condensate of the nuclear string consisting of  ${}^{4}He$  nuclei costs energy. This de-coherence

need not involve a splitting of nuclear strings although also this is possible. Similar de-coherence can occur for  ${}^{4}He A < 4$  nuclei. It turns out that these three de-coherence mechanisms explain quite nicely the basic aspects of giant dipole resonance (GDR) and its variants both qualitatively and quantitatively and that precise predictions for the fine structure of GDR emerge.

## 6.1 De-coherence at the level of ${}^{4}He$ nuclear string

The de-coherence of a nucleus having  $n \ ^4He$  nuclei to a nucleus containing two Bose-Einstein condensates having n - k and  $k > 2 \ ^4He$  nuclei requires energy given by

$$\begin{aligned} \Delta E &= (n^2 - (n-k)^2 - k^2)E_s = 2k(n-k)E_s \ , \ k > 2 \ , \\ \Delta E &= (n^2 - (n-2)^2 - 1)E_s = (4n-5)E_s \ , \ k = 2 \ , \\ E_s &\simeq .1955 \ MeV \ . \end{aligned}$$
(14)

Bose-Einstein condensate could also split into several pieces with some of them consisting of single  ${}^{4}He$  nucleus in which case there is no contribution to the color binding energy. A more general formula for the resonance energy reads as

$$\Delta E = (n^2 - \sum_i k^2(n_i))E_s , \sum_i n_i = n ,$$

$$k(n_i) = \begin{cases} n_i \text{ for } n_i > 2 , \\ 1 \text{ for } n_i = 2 , \\ 0 \text{ for } n_i = 1 . \end{cases}$$
(15)

The table below lists the resonance energies for four manners of  ${}^{16}O$  nucleus (n = 4) to lose its coherence.

| final state    | 3+1    | 2+2    | 2+1+1  | 1+1+1+1 |
|----------------|--------|--------|--------|---------|
| $\Delta E/MeV$ | 1.3685 | 2.7370 | 2.9325 | 3.1280  |

Rather small energies are involved. More generally, the minimum and maximum resonance energy would vary as  $\Delta E_{min} = (2n-1)E_s$  and  $\Delta E_{max} = n^2 E_s$  (total de-coherence). For  $n = n_{max} = 13$  one would have  $\Delta E_{min} = 2.3640$  MeV and  $\Delta E_{max} = 33.099$  MeV.

Clearly, the loss of coherence at this level is a low energy collective phenomenon but certainly testable. For nuclei with A > 60 one can imagine also double resonance when both coherent Bose-Einstein condensates possibly present split into pieces. For  $A \ge 120$  also triple resonance is possible.

### 6.2 De-coherence inside ${}^{4}He$ nuclei

One can consider also the loss of coherence occurring at the level  ${}^{4}He$  nuclei. Predictions for resonances energies and for the dependence of GR cross sections on mass number follow.

#### 6.2.1 Resonance energies

For <sup>4</sup>He nuclei one has  $E_s = 1.820$  MeV. In this case de-coherence would mean the decomposition of Bose-Einstein condensate to  $n = 4 \rightarrow \sum n_i = n$  with  $\Delta E = n^2 - \sum_{n_i} k^1(n_i) = 16 - \sum_{n_i} k^2(n_i)$ . The table below gives the resonance energies for the four options  $n \rightarrow \sum_i n_i$  for the loss of coherence.

| final state    | 3+1   | 2+2   | 2+1+1 | 1 + 1 + 1 + 1 |
|----------------|-------|-------|-------|---------------|
| $\Delta E/MeV$ | 12.74 | 25.48 | 27.30 | 29.12         |

These energies span the range at which the cross section for  ${}^{16}O(\gamma, xn)$  reaction has giant dipole resonances [30]. Quite generally, GDR is a broad bump with substructure beginning around 10 MeV and ranging to 30 MeV. The average position of the bump as a function of atomic number can be parameterized by the following formula

$$E(A)/MeV = 31.2A^{-1/3} + 20.6A^{-1/6}$$
(16)

given in [31]. The energy varies from 36.6 MeV for A = 4 (the fit is probably not good for very low values of A) to 13.75 MeV for A = 206. The width of GDR ranges from 4-5 MeV for closed shell nuclei up to 8 MeV for nuclei between closed shells.

The observation raises the question whether the de-coherence of Bose-Einstein condensates associated with  ${}^{4}He$  and nuclear string could relate to GDR and its variants. If so, GR proper would be a collective phenomenon both at the level of single  ${}^{4}He$  nucleus (main contribution to the resonance energy) and entire nucleus (width of the resonance). The killer prediction is that even  ${}^{4}He$  should exhibit giant dipole resonance and its variants: GDR in  ${}^{4}He$  has been reported [32].

#### 6.2.2 Some tests

This hypothesis seems to survive the basic qualitative and quantitative tests.

- 1. The basic prediction of the model peak at 12.74 MeV and at triplet of closely located peaks at (25.48, 27.30, 29.12) MeV spanning a range of about 4 MeV, which is slightly smaller than the width of GDR. According to [33] there are two peaks identified as iso-scalar GMR at  $13.7 \pm .3$  MeV and iso-vector GMR at  $26 \pm 3$  MeV. The 6 MeV uncertainty related to the position of iso-vector peak suggests that it corresponds to the triplet (25.48, 27.30, 29.12) MeV whereas singlet would correspond to the iso-scalar peak. According to the interpretation represented in [33] iso-scalar *resp.* iso-vector peak would correspond to oscillations of proton and neutron densities in same *resp.* opposite phase. This interpretation can make sense in TGD framework only inside single <sup>4</sup>He nucleus and would apply to the transverse oscillations of <sup>4</sup>He string rather than radial oscillations of entire nucleus.
- 2. The presence of triplet structure seems to explain most of the width of iso-vector GR. The combination of GDR internal to  ${}^{4}He$  with GDR for the entire nucleus (for which resonance energies vary from  $\Delta E_{min} = (2n 1)E_s$  to  $\Delta E_{max} = n^2E_s$  (n = A/4)) predicts that also latter contributes to the width of GDR and give it additional fine structure. The order of magnitude for  $\Delta E_{min}$  is in the range [1.3685,2.3640] MeV which is consistent with the with of GDR and predicts a band of width 1 MeV located 1.4 MeV above the basic peak.
- 3. The de-coherence of A < 4 nuclei could increase the width of the peaks for nuclei with partially filled shells: maximum and minimum values of resonance energy are  $9E_s(^4He)/2 = 8.19$  MeV and  $4E_s(^4He) = 7.28$  MeV for  $^3He$  and  $^3H$  which conforms with the upper bound 8 MeV for the width.
- 4. It is also possible that  $n \ ^4He$  nuclei simultaneously lose their coherence. If multiplet decoherence occurs coherently it gives rise to harmonics of GDR. For de-coherent decoherence so that the emitted photons should correspond to those associated with single  $\ ^4He$  GDR combined with nuclear GDR. If absorption occurs for  $n \leq 13$  nuclei simultaneously, one obtains a convoluted spectrum for resonant absorption energy

$$\Delta E = [16n - \sum_{j=1}^{n} \sum_{i_j} k^2(n_{i_j})] E_s . \qquad (17)$$

The maximum value of  $\Delta E$  given by  $\Delta E_{max} = n \times 29.12$  MeV. For n = 13 this would give  $\Delta E_{max} = 378.56$  MeV for the upper bound for the range of excitation energies for GDR. For heavy nuclei [31] GDR occurs in the range 30-130 MeV of excitation energies so that the order of magnitude is correct. Lower bound in turn corresponds to a total loss of coherence for single <sup>4</sup>He nucleus.

5. That the width of GDR increases with the excitation energy [31] is consistent with the excitation of higher GDR resonances associated with the entire nuclear string.  $n \leq n_{max}$  for GDR at the level of the entire nucleus means saturation of the GDR peak with excitation energy which has been indeed observed [30].



Figure 1: The comparison of photoneutron cross sections  ${}^{16}O(\gamma, xn)$  obtained in one BRexperiment (Moscow State University) and two QMA experiments carried out at Saclay (France) Livermoore (USA). Figure is taken from [30] where also references to experiments can be found.

One can look whether the model might work even at the level of details. Figure 3 of [30] compares total photoneutron reaction cross sections for  ${}^{16}O(\gamma, xn)$  in the range 16-26 MeV from some experiments so that the possible structure at 12.74 MeV is not visible in it. It is obvious that the resonance structure is more complex than predicted by the simplest model. It seems however possible to explain this.

1. The main part of the resonance is a high bump above 22 MeV spanning an interval of about 4 MeV just as the triplet at (25.48,27.30,29.12) MeV does. This suggest a shift of the

predicted 3-peak structure in the range 25-30 MeV range downwards by about 3 MeV. This happens if the photo excitation inducing the de-coherence involves a dropping from a state with excitation energy of 3 MeV to the ground state. The peak structure has peaks roughly at the shifted energies but there is also an additional structure which might be understood in terms of the bands of width 1 MeV located 1.4 MeV above the basic line.

2. There are three smaller bumps below the main bump which also span a range of 4 MeV which suggests that also they correspond to a shifted variant of the basic three-peak structure. This can be understood if the photo excitation inducing de-coherence leads from an excited state with excitation energy 8.3 MeV to ground state shifting the resonance triplet (25.48, 27.30, 29.12) MeV to resonance triplet at (17.2, 19.00, 20.82) MeV.

On basis of these arguments it seems that the proposed mechanism might explain GR and its variants. The basic prediction would be the presence of singlet and triplet resonance peaks corresponding to the four manners to lose the coherence. Second signature is the precise prediction for the fine structure of resonance peaks.

#### 6.2.3 Predictions for cross sections

The estimation of collision cross sections in nuclear string model would require detailed numerical models. One approach to modelling would be to treat the colliding nuclear strings as random coils with finite thickness defined by the size of  $A \leq 4$  strings. The intersections of colliding strings would induce fusion reactions and self intersections fissions. Simple statistical models for the intersections based on geometric probability are possible and allow to estimate branching ratios to various channels.

In the case of GR the reduction to  ${}^{4}He$  level means strong testable predictions for the dependence of GR cross sections on the mass number. GR involves formation of eye-glass type configuration at level of single  ${}^{4}He$  and in the collision of nuclei with mass numbers  $A_{1}$  and  $A_{2}$  GR means formation of these configurations for some A = 4 unit associated with either nucleus. Hence the GR cross section should be in a reasonable approximation proportional to  $n_{1} + n_{2}$  where  $n_{i}$  are the numbers of A = 4 sub-units, which can be either  ${}^{4}He$ , tetra-neutron, or possible other variants of  ${}^{4}He$  having charged color bonds. For  $Z_{i} = 2m_{i}$ ,  $N = 2n_{i}$ ,  $A_{i} = 4(m_{i} + n_{i})$  nuclei one has  $n_{1} + n_{2} = (A_{1} + A_{2})/4$ . Also a characteristic oscillatory behavior as a function of A is expected if the number of A = 4 units is maximal. If GR reactions are induced by the touching of  ${}^{4}He$  units of nuclear string implying transfer of kinetic energy between units then the GR cross sections should depend only on the energy per  ${}^{4}He$  nucleus in cm system, which is also a strong prediction.

#### 6.3 De-coherence inside A = 3 nuclei and pygmy resonances

For neutron rich nuclei the loss of coherence is expected to occur inside  ${}^{4}He$ , tetra-neutron,  ${}^{3}He$ and possibly also  ${}^{3}n$  which might be stable in the nuclear environment. The de-coherence of tetra-neutron gives in the first approximation the same resonance energy spectrum as that for  ${}^{4}He$  since  $E_B({}^{4}n) \sim E_B({}^{4}He)$  roughly consistent with the previous estimates for  $E_B({}^{4}n)$  implies  $E_s({}^{4}n) \sim E_s({}^{4}He)$ .

The de-coherence inside A = 3 nuclei might explain the so called pygmy resonance appearing in neutron rich nuclei, which according to [34] is wide bump around  $E \sim 8$  MeV. For A = 3 nuclei only two de-coherence transitions are possible:  $3 \rightarrow 2 + 1$  and  $3 \rightarrow 1 + 1 + 1$  and  $E_s = E_B(^3H) = .940$ MeV the corresponding energies are  $8E_s = 7.520$  MeV and 9 \* Es = 8.4600 MeV. Mean energy is indeed  $\sim 8$  MeV and the separation of peaks about 1 MeV. The de-coherence at level of <sup>4</sup>He string might add to this 1 MeV wide bands about 1.4 MeV above the basic lines.



Figure 2: Pygmy resonances in  ${}^{44}Ca$  and  ${}^{48}Ca$  up to 11 MeV. Figure is taken from [35].

The figure of [35] illustrating photo-absorption cross section in  ${}^{44}Ca$  and  ${}^{48}Ca$  shows three peaks at 6.8, 7.3, 7.8 and 8 MeV in  ${}^{44}Ca$ . The additional two peaks might be assigned with the excitation of initial or final states. This suggests also the presence of also A = 3 nuclear strings in  ${}^{44}Ca$  besides  ${}^{H}4$  and  ${}^{4}n$  strings. Perhaps neutron halo wave function contains  ${}^{3}n + n$  component besides  ${}^{4}n$ . For  ${}^{48}Ca$  these peaks are much weaker suggesting the dominance of  $2 \times {}^{4}n$  component.

#### 6.4 De-coherence and the differential topology of nuclear reactions

Nuclear string model allows a topological description of nuclear decays in terms of closed string diagrams and it is interesting to look what characteristic predictions follow without going to detailed quantitative modelling of stringy collisions possibly using some variant of string models.

In the de-coherence eye-glass type singularities of the closed nuclear string appear and make possible nuclear decays.

1. At the level of  ${}^{4}He$  sub-strings the simplest singularities correspond to  $4 \rightarrow 3 + 1$  and  $4 \rightarrow 2 + 2$  eye-glass singularities. The first one corresponds to low energy GR and second to one of higher energy GRs. They can naturally lead to decays in which nucleon or deuteron is emitted in decay process. The singularities  $4 \rightarrow 2+1+1$  resp.  $4 \rightarrow 1+1+1+1$  correspond to eye-glasses with 3 resp. four lenses and mean the decay of  ${}^{4}He$  to deuteron and two nucleons resp. 4 nucleons. The prediction is that the emission of deuteron requires a considerably larger excitation energy than the emission of single nucleon. For GR at level of A = 3 nuclei analogous considerations apply. Taking into account the possible tunnelling of the nuclear strings from the nuclear space-time sheet modifies this simple picture.

2. For GR in the scale of entire nuclei the corresponding singular configurations typically make possible the emission of alpha particle. Considerably smaller collision energies should be able to induce the emission of alpha particles than the emission of nucleons if only stringy excitations matter. The excitation energy needed for the emission of  $\alpha$  particle is predicted to increase with A since the number n of <sup>4</sup>He nuclei increases with A. For instance, for Z = N = 2n nuclei  $n \to n-1+1$  would require the excitation energy  $(2n-1)E_c = (A/2-1)E_c$ ,  $E_c \simeq .2$  MeV. The tunnelling of the alpha particle from the nuclear space-time sheet can modify the situation.

The decay process allows a differential topological description. Quite generally, in the decoherence process  $n \to (n-k) + k$  the color magnetic flux through the closed string must be reduced from n to n-k units through the first closed string and to k units through the second one. The reduction of the color color magnetic fluxes means the reduction of the total color binding energy from  $n^2 E_c ((n-k)^2 + k^2) E_c$  and the kinetic energy of the colliding nucleons should provide this energy.

Faraday's law, which is essentially a differential topological statement, requires the presence of a time dependent color electric field making possible the reduction of the color magnetic fluxes. The holonomy group of the classical color gauge field  $G^A_{\alpha\beta}$  is always Abelian in TGD framework being proportional to  $H^A J_{\alpha\beta}$ , where  $H^A$  are color Hamiltonians and  $J_{\alpha\beta}$  is the induced Kähler form. Hence it should be possible to treat the situation in terms of the induced Kähler field alone. Obviously, the change of the Kähler (color) electric flux in the reaction corresponds to the change of (color) Kähler (color) magnetic flux. The change of color electric flux occurs naturally in a collision situation involving changing induced gauge fields.

# 7 Cold fusion, plasma electrolysis, and burning salt water

The article of Kanarev and Mizuno [46] reports findings supporting the occurrence of cold fusion in NaOH and KOH hydrolysis. The situation is different from standard cold fusion where heavy water  $D_2O$  is used instead of  $H_2O$ .

One can understand the cold fusion reactions reported by Mizuno as nuclear reactions in which part of what I call dark proton string having negatively charged color bonds (essentially a zoomed up variant of ordinary nucleus with large Planck constant) suffers a phase transition to ordinary matter and experiences ordinary strong interactions with the nuclei at the cathode. In the simplest model the final state would contain only ordinary nuclear matter. The generation of plasma in plasma electrolysis can be seen as a process analogous to the positive feedback loop in ordinary nuclear reactions.

Rather encouragingly, the model allows to understand also deuterium cold fusion and leads to a solution of several other anomalies.

- 1. The so called lithium problem of cosmology (the observed abundance of lithium is by a factor 2.5 lower than predicted by standard cosmology [37]) can be resolved if lithium nuclei transform partially to dark lithium nuclei.
- 2. The so called  $H_{1.5}O$  anomaly of water [59, 60, 61, 62] can be understood if 1/4 of protons of water forms dark lithium nuclei or heavier dark nuclei formed as sequences of these just as ordinary nuclei are constructed as sequences of  ${}^{4}He$  and lighter nuclei in nuclear string model. The results force to consider the possibility that nuclear isotopes unstable as ordinary matter can be stable dark matter.
- 3. The mysterious behavior burning salt water [53] can be also understood in the same framework.

4. The model explains the nuclear transmutations observed in Kanarev's plasma electrolysis. Intriguingly, several biologically important ions belong to the reaction products in the case of NaOH electrolysis. This raises the question whether cold nuclear reactions occur in living matter and are responsible for generation of biologically most important ions.

#### 7.1 The data

#### 7.1.1 Findings of Kanarev

Kanarev has found that the volume of produced  $H_2$  and  $O_2$  gases is much larger than the volume resulting in the electrolysis of the water used in the process. If one knows the values of p and Tone can estimate the volumes of  $H_2$  and  $O_2$  using the equation of state V = nT/p of ideal gas. This gives

$$V(H_2; p, T) = \frac{A(H_2)}{A(H_2O)} \times \frac{M(H_2O)}{m_p} = \frac{1}{9} \frac{M(H_2O)}{m_p} \times \frac{T}{p}$$

Here  $M(H_20)$  is the total mass of the water (.272 kg for KOH and .445 kg for NaOH).

In the situation considered one should be able to produce from one liter of water 1220 liters of hydrogen and 622 liters of oxygen giving

$$V(H_2)/V(H_2O) = 1.220 \times 10^3$$
,  $V(O_2)/V(H_2O) = .622 \times 10^3$ ,

$$r(gas) = V(H_2 + O_2)/V(H_2O) = 1.844 \times 10^3$$
,  $V(H_2)/V(O_2) \simeq 1.96$ 

 $V(H_2)/V(O_2) \simeq 1.96$  is 4 per cent smaller than the prediction  $V(H_2)/V(O_2) = 2$  of the ideal gas approximation.

The volumes of  $O_2$  and  $H_2$  are not reported separately. The table gives the total volumes of gas produced and ratios to the volume of water used.

|      | $M(H_2O)/kg$ | $V(gas)/m^3$ | $\frac{V(gas)}{V(H_2O)}$ | $\frac{[V(gas)/V(H_2O)]}{r(gas)}$ |
|------|--------------|--------------|--------------------------|-----------------------------------|
| KOH  | .272         | 8.75         | $3.2 \times 10^{4}$      | 17.4                              |
| NaOH | .445         | 12.66        | $2.8 \times 10^4$        | 15.2                              |

Table 1. The weight of water used in the electrolysis and the total volume of gas produced for KOH and NaOH electrolysis. r(gas) denotes the naive prediction for the total volume of gas per water volume appearing in previous table. For KOH *resp.* NaOH the volume ratio  $[V(gas)/V(H_2O)]$  is by a factor r = 17.4 resp. r = 15.2 higher than the naive estimate.

#### 7.1.2 Findings of Mizuno

Mizuno in turn found that the Fe cathode contains Si, K, Cr, Fe, Cu for both KOH and NaOH electrolysis and in case of NaOH also Al, Sl, Ca. The fraction of these nuclei is of order one per cent. The table below gives the fractions for both KOH and NaOH.

| КОН          |           |            |           |           |
|--------------|-----------|------------|-----------|-----------|
| Element(Z,N) | Al(13,27) | Si(14,28)  | Cl(17,18) | K(19,20)  |
| %            |           | 0.94       |           | 4.50      |
| Element(Z,N) | Ca(20,20) | Cr(24,28)) | Fe(26,29) | Cu(29,34) |
| %            |           | 1.90       | 93.0      | 0.45      |
| NaOH         |           |            |           |           |
| Element(Z,N) | Al(13,27) | Si(14,28)  | Cl(17,18) | K(19,20)  |
| %            | 1.10      | 0.55       | 0.20      | 0.60      |
| Element(Z,N) | Ca(20,20) | Cr(24,28)) | Fe(26,29) | Cu(29,34) |
| %            | 0.40      | 1.60       | 94.0      | 0.65      |

Table 2. The per cent of various nuclei in cathode for KOH and NaOH electrolysis.

The results supports the view that nuclear reactions involving new nuclear physics are involved and that part of  $H_2$  and  $O_2$  could be produced by nuclear reactions at the cathode.

- 1. For Si, K, Cr, Fe, and Cu the mechanism could be common for both NaOH and KOH electrolysis and presumably involve fission of Fe nuclei. The percent of K in KOH is considerably larger than in NaOH case and this is presumably due to the absorption of  $K^+$  ions by the cathode.
- 2. For Al, Si, and Ca the reaction occurring only for Na should involve Na ions absorbed by the cathode and suffering cold fusion with some particles -call them just X to be identified.
- 3. Cu is the only element heavier than Fe and is expected to be produced by fusion with X. Quite generally, the fractions are of order one per cent.
- 4. The authors suggests that the extra volume of  $H_2$  and  $O_2$  molecules is due to nuclear reactions in the cathode. A test for this hypothesis would be the ratio of  $H_2$  and  $O_2$  volumes. Large deviation from value 2 would support the hypothesis. The value near 2 would in turn support the hypothesis that the water produced by electrolysis is considerably denser than ordinary water.

#### 7.2 $H_{1.5}O$ anomaly and nuclear string model

It would seem that some exotic nuclei, perhaps consisting of protons, should be involved with the cold fusion. Concerning the identification of these exotic particles there are several guidelines.  $H_{1.5}O$  anomaly, anomalous production of  $e^+e^-$  pairs in heavy ion collisions, and nuclear string model.

# 7.2.1 $H_{1.5}O$ anomaly and anomalous production of electron-positron pairs in heavy ion collisions

There exists an anomaly which could be explained in terms of long open nuclear strings. The explanation of  $H_{1,5}O$  anomaly [59, 60, 61, 62] discussed in [F10] as a manifestation of dark protons was one of the first applications of TGD based ideas about dark matter. The proposed explanation is that the fraction of 1/4 of protons is in attosecond time scale dark and invisible in electron scattering and neutron diffraction. Note that attosecond time scale corresponds to the time during which light travels a length of order atomic size.

A natural identification of the dark protons would be in terms of protonic strings behaving like nuclei having anomalously large size, which would be due to the anomalously large value of Planck constant. A partial neutralization by negatively charge color bonds would make these states stable. The TGD based explanation of anomalous production of electron-positron pairs in the collisions of heavy nuclei just above the Coulomb wall [F7] is in terms of lepto-pions consisting of pairs of color octet electron and positron allowed by TGD and having mass slightly below  $2m_e \simeq 1$  MeV. The strong electromagnetic fields created in collision create coherent state of leptopions decaying into electron positron pairs.

#### 7.2.2 Nuclear string model

The nuclear string model describes nuclei as string like structures with nucleons connected by color magnetic flux tubes whose length is of order electron Compton length about  $10^{-12}$  meters and even longer and thus much longer than the size scale of nuclei themselves which is below  $10^{-14}$  meters. Color magnetic flux tubes define the color magnetic body of nucleus and each flux tube has colored fermion and antifermion at its ends. The net color of pair is non-vanishing so that color confinement binds the nucleons to the nuclear string. Nuclei can be visualized as structures analogous to plants with nucleus taking the role of seed and color magnetic body of much larger size taking the role of plant with color flux tubes however returning back to another nucleon inside nucleus.

One can imagine two basic identifications of the fermions.

- 1. For the first option fermions are identified as quarks. The color flux tube can have three charge states q = +1, 0, -1 according to whether it corresponds to  $u\overline{d}, u\overline{u} + d\overline{d}$ , or  $\overline{u}d$  type state for quarks. This predicts a rich spectrum of exotic nuclei in which neutrons consist actually of proton plus negatively charged flux tube. The small mass difference between neutron and proton and small mass of the quarks (of order MeV) could quite well mean that these exotic nuclei are identified as ordinary nuclei. The findings of Illert [21] support the identification as quarks.
- 2. Lepto-hadron hypothesis [F7] encourages to consider also the possibility that color bonds have color octet electrons at their ends. This would make it easier to understand why leptopions are produced in the collisions of heavy nuclei.
- 3. One can also consider the possibility that the color bonds are superpositions of quarkantiquark pairs and colored electron-positron pairs.

#### 7.2.3 Two options

One can consider two options for protonic strings. Either their correspond to open strings connected by color magnetic flux tubes or protons are dark so that giant nuclei are in question.

1. Protonic strings as open strings?

Color flux tubes connecting nucleons are long and one can ask whether it might be possible also open nuclear strings with long color flux tubes connecting widely separate nucleons even at atomic distance. These kind of structures would be favored if the ends of nuclear string are charged.

Even without assumption of large values of Planck constant for the color magnetic body and quarks the net length of flux tubes could be of the order of atomic size. Large value  $\hbar$  would imply an additional scaling.

The simplest giant nuclei constructible in this manner would consist of protons connected by color magnetic flux tubes to from an open string. Stability suggest that the charge per length is not too high so that some minimum fraction of the color bonds would be negatively charged. One could speak of exotic counterparts of ordinary nuclei differing from them only in the sense that size scale is much larger. A natural assumption is that the distance between charged protonic space-time sheets along string is constant. In the sequel the notation X(z, n) will be is used for the protonic string containing net charge z and n negatively charged bonds. a = z + n will denote the number of protons. z, n and a are analogous to nuclear charge Z, neutron number N, and mass number A. For open strings the charge is  $z \ge 1$  and for closed strings  $z \ge 0$  holds true.

This option has however problem. It is difficult imagine how the nuclear reactions could take place. One can imagine ordinary stringy diagrams in which touching of strings means that proton of protonic string and ordinary nucleus interact strongly in ordinary sense of the word. It is however difficult to imagine how entire protonic string could be absorbed into the ordinary nucleus.

#### 2. Are protons of the protonic string dark?

Second option is that protonic strings consist of dark protons so that nuclear space-time-sheet has scale up size, perhaps of order atomic size. This means that fermionic charge is distributed in much larger volume and possibly also the fermions associated with color magnetic flux tubes have scaled up sized. The value  $\hbar = 2^{11}\hbar_0$  would predict Compton length of order  $10^{-12}$  m for nucleon and upper size of order  $10^{-11}$  for nuclei.

Cold nuclear reactions require a transformation of dark protons to ordinary ones and this requires leakage to the sector of the imbedding space in which the ordinary nuclei reside (here the book metaphor for imbedding space is very useful). This process can take place for a neutral part of protonic string and involves a reduction of proton and fermion sizes to normal ones. The phase transition could occur first only for a neutral piece of the protonic string having charges at its ends and initiate the nuclear reaction. Part of protonic string could remain dark and remaining part could be "eaten" by the ordinary nucleus or dark protonic string could "eat" part of the ordinary nuclear string. If the leakage occurs for the entire dark proton string, the nuclear reaction itself is just ordinary nuclear reaction and is expected to give out ordinary nuclei. What is important that apart from the crucial phase transition steps in the beginning and perhaps also in the end of the reaction, the model reduces to ordinary nuclear physics and is in principle testable.

The basic question is how plasma phase resulting in electrolysis leads to the formation of dark protons. The proposal [C10] that the transition takes place with perturbative description of the plasma phase fails, might be more or less correct. Later a more detailed nuclear physics picture about the situation emerges.

#### 3. What happens to electrons in the formation of protonic strings?

One should answer two questions.

- 1. What happens to the electrons of hydrogen atoms in the formation of dark protonic strings?
- 2. In plasma electrolysis the increase of the input voltage implies a mysterious reduction of the electron current with the simultaneous increase of the size of the plasma region near the cathode [48]. This means reduction of conductance with voltage and thus non-linear behavior. Where does electronic charge go?

Obviously the negatively charged color bond created by adding one proton to a protonic string could take the charge of electron and transform electrons as charge carriers to color bonds of dark Li isotopes which charge Z = 3 by gluing to existing protons sequence proton and negatively charged color bond. If the proton comes from  $H_2O OH^-$  replaces electron as a charge carrier. This would reduced the conductivity since  $OH^-$  is much heavier than electron. This kind of process and its reversal would take place in the transformation of hydrogen atoms to dark proton strings and back in atto-second time scale.

The color bond could be either  $\overline{u}d$  pair or  $e_8\overline{\nu}_8$  pair or quantum superposition of these. The basic vertex would involve the exchange of color octet super-canonical bosons and their neutrino counterparts. Lepton number conservation requires creation of color singlet states formed of color

octet neutrinos which ar bosons and carrying lepton number -2. One color confined neutrino pair would be created for each electron pair consumed in the process and might escape the system: if this happens, the process is not reversible above the time scale defined by colored neutrino mass scale of order .1 eV which happens to be of order .1 attoseconds for ordinary neutrinos. Also ordinary nuclei could consist of nucleons connected by identical neutral color bonds (mostly).

The exchange of light counterparts of charged  $\rho$  mesons having mass of order MeV could lead to the transformation of neutral color bonds to charged ones. In deuterium cold fusion the exchange of charged  $\rho$  mesons between D and Pd nuclei could transform D nuclei to states behaving like di-neutrons so that cold fusion for D could take place. In the earlier proposal exchange of  $W^+$ boson of scaled variant of weak interactions was proposed as a mechanism.

The formation of charged color bonds binding new dark protons to existing protonic nuclear strings or giving rise to the formation of completely new protonic strings would also increase of the rates of cold nuclear reactions.

Note that this picture leaves open the question whether the fermions associated with color bonds are quarks or electrons.

# 7.2.4 Nuclei and their dark variants must have same binding energy scale at nuclear quantum criticality

The basic question is what happens to the scale of binding energy of nuclei in the zooming up of nuclear space-time sheet. Quantum criticality requires that the binding energies scales must be same.

- 1. Consider first the binding energy of the nuclear strings. The highly non-trivial prediction of the nuclear string model is that the contributions of strong contact interactions at nuclear space-time sheet (having size  $L < 10^{-14}$  m) to the binding energy vanish in good approximation for ground states with vanishing strong isospin. This means that the binding energy comes from the binding energy assignable to color bonds connecting nucleons together.
- 2. Suppose that this holds true in a good approximation also for dark nuclei for which the distances of nucleons at zoomed up nuclear space-time sheet (having originally size below  $10^{-14}$  meters) are scaled up. As a matter fact, since the scale of binding energy for contact interactions is expected to reduce, the situation is expected to improve. Suppose that color bonds with length of order  $10^{-12}$  m preserve their lengths. Under these assumptions the nuclear binding energy scale is not affected appreciably and one can have nuclear quantum criticality. Note that the length for the color bonds poses upper limit of order 100 for the scaling of Planck constant.

It is essential that the length of color bonds is not changed and only the size of the nuclear spacetime sheet changes. If also the length and thickness of color bonds is scaled up then a naive scaling argument assuming that color binding energy related to the interaction of transforms as color Coulombic binding energy would predict that the energy scales like  $1/\hbar$ . The binding energies of dark nuclei would be much smaller and transformation of ordinary nuclei to dark nuclei would not take place spontaneously. Quantum criticality would not hold true and the argument explaining the transformation of ordinary Li to its dark counterpart and the model for the deuterium cold fusion would be lost.

#### 7.3 A model for the observations of Mizuno

The basic objection against cold nuclear reactions is that Coulomb wall makes it impossible for the incoming nuclei to reach the range of strong interactions. In order that the particle gets to the cathode from electrolyte it should be positively charged. Positive charge however implies Coulomb wall which cannot be overcome with the low energies involved.

These two contradictory conditions can be satisfied if the electrolysis produces exotic phase of water satisfying the chemical formula  $H_{1.5}O$  with 1/4 of protons in the form of almost neutral protonic strings can possess only few neutral color bonds. The neutral portions of the protonic string, which have suffered phase transition to a phase with ordinary Planck constant could get very near to the target nucleus since the charges of proton can be neutralized in the size scale of proton by the charges  $\bar{u}$  and d quarks or e and  $\bar{\nu}$  associated with the two bonds connecting proton to the two neighboring protons. This could make possible cold nuclear reactions.

It turns out that the model fixes protonic strings to isotopes of dark Lithium (with neutrons replaced with proton plus negatively charged color bond). What is intriguing is that the biologically most important ions (besides  $Na^+$ )  $Cl^-$ ,  $K^+$ , and  $Ca^{++}$  appear at the cathode in Kanarev's plasma electrolysis actually result as outcomes of cold nuclear reactions between dark Li and  $Na^+$ .

#### 7.3.1 General assumptions of the model

The general assumptions of the model are following.

- 1. Ordinary nuclei are nuclear strings, which can contain besides neutrons also "pseudo-neutrons" consisting of pairs of protons and negatively charged color bonds. The model for D cold fusion requires that the Pd nuclei contain also "pseudo-neutrons".
- 2. Reaction products resulting in the fusion of exotic protonic string transforming partially to ordinary nuclear matter (if originally in dark phase) consist of the nuclei detected in the cathode plus possibly also nuclei which form gases or noble gases and leak out from the cathode.
- 3. Si, K, Cr, and Cu are produced by the same mechanism in both KOH and NaOH electrolysis.
- 4. *Al*, *Cl*, and *Ca* is produced by a mechanism which must involve cold nuclear reaction between protonic string and Na ions condensed on the cathode.
- 5. Cu(Z, N) = Cu(29, 34) is the only product nucleus heavier than Fe(26, 29). If no other nuclei are involved and Cu is produced by cold fusion

$$X(z,n) + Fe(26,29) \rightarrow Cu(29,34)$$
,

the anatomy of protonic string must be

$$X(z,n) = X(3,5)$$

so that dark variant Li(3,5) having charge 3 and mass number 8 would be in question. X(3,5) would have 2 neutral color bonds and 5 negatively charged color bonds. To minimize Coulomb interaction the neutral color bonds must reside at the ends of the string. For quark option one would have charge 1 + 2/3 at the first end and 1 + 1/3 at the second end and charges of all protons between them would be neutralized. For color octet lepton color bond one would have charge 2 at the other end and zero at the other end.

For quark option the net protonic charge at the ends of the string causing repulsive interaction between the ends could make protonic string unstable against transition to dark phase in which the distance between ends is much longer even if the ends are closed within scaled up variant of the nuclear volume. Arbitrarily long strings X(3, n) having neutral bonds only at their ends are possible and their fusions lead to neutron rich isotopes of Cu nucleus decaying to the stable isotope. Hence the prediction that only Cu is produced is very general.

The simplest dark protonic strings X(3, n) have quantum numbers of Li(3, n). One of the hard problems of Big Bang cosmology is that the measured abundance of lithium is by a factor of about 2.5 lower than the predicted abundance [37]. The spontaneous transformation of Li(3, n) isotopes to their dark variants could explain the discrepancy. Just by passing notice that Li has mood stabilizing effect [36]: the spontaneous transformation of  $Li^+$  to its dark variant might relate to this effect.

#### **7.3.2** Production mechanisms for the light nuclei common to Na and K

These nuclei must be produced by a fission of Fe nuclei.

1. For Si(14, 14) production the mechanism would be cold fission of Fe nucleus to two parts in the collision with the protonic string:

$$X(3,5) + Fe(26,29) \rightarrow Si(14,14) + Al(13,14) + X(2,6)$$
.

X(2,6) represent dark or ordinary He(2,6). As a noble gas He isotope would leave the cathode.

Note that arbitrarily long proton strings with two neutral bonds at their ends give neutron rich isotope of Si and exotic or ordinary isotope of He so that again the prediction is very general.

2. K(19, 20) is produced much more in KOH which most probably means that part of  $K^+$  is absorbed from the electrolyte. In this case the reaction could proceed as follows:

$$X(3,5) + Fe(26,29) \rightarrow K(19,20) + Ne(7,7) + X(3,7)$$
.

Note that the neutron number could be distributed in many manners between final states. For arbitrarily long proton string with two neutral bonds at ends higher neutron rich isotopes of K and Ne are produced. As noble gas Ne would leak out from the cathode.

Ordinary Li(3,7) would decay by neutron emission to stable isotopes of Li. The temperature of the system determines whether Li boils out (1615 K under normal pressure). Li is not reported to appear in the cathode. In plasma electrolysis the temperature is in the interval  $.5 \times 10^4$ -  $10^4$  C and around  $10^3$  C in the ordinary electrolysis so that the high temperature might explain the absence of Li. Also the in-stability of Li isotopes against transition to dark Li in electrolyte would imply the absence of Li.

3. For Cr(24, 28) production the simplest reaction would be

$$X(3,5) + Fe(26,29) \to Cr(24,28) + He(2,2) + X(3,4) \ .$$

Helium would leak out as noble gas. Proton string would shorten by one unit and keep its charge. X(3,4) would represent the stable isotope Li(3,4) or its dark counterpart and what has been said in 2) applies also now.

#### 7.3.3 How to understand the difference between KOH and NOH?

One should understand why Al, Cl, and Ca are not detected in the case of KOH electrolysis.

Al, Cl, and Ca would be created in the fusion of protonic strings with Na(11, 12) nuclei absorbed by the cathode. With this assumption the rates are expected to be of same order of magnitude for all these processes as suggested by the one per cent order of magnitude for all fractions.

One can imagine two reaction mechanisms.

I: One could understand the production assuming only X(3,5) protonic strings if the number of X(3,5) strings absorbed by single Na nucleus can be k = 1, 2, 3 and that nuclear fission can take place after each step with a rate which is slow as compared to the rate of absorptions involving also the phase transition to dark matter. This is however highly implausible since ordinary nuclear interactions are in question.

II: Second possibility is that the protonic strings appearing with the highest probability are obtained by fusing copies of the basic string X(3,5) by using neutral color bond between the strings. The minimization of electrostatic energy requires that that neutral color bonds are equally spaced so that there are three completely neutralized protons between non-neutralized protons.

One would have thus at least the strings X(3,5), X(6,10), and X(9,15), which correspond to dark Li(3,5) and dark variants of the unstable isotopes C(6,10) and F(9,15). In nuclear string model also ordinary nuclei are constructed from He(2,2) strings and lighter strings in completely analogous manner, and one could perhaps see the dark nuclei constructed from Li(3,5) as the next level of hierarchy realized only at the level of dark matter.

The charge per nucleon would be 3/8 and the length of the string would be a multiple of 8. Interestingly, the numbers 3, 5, and 8 are subsequent Fibonacci numbers appearing very frequently also in biology (micro-tubules, sunflower patterns). The model predicts also the occurrence of cold fusions  $X(z = 3k, n = 5k) + Fe(26, 29) \rightarrow (Z, N) = (26 + 3k, 29 + 5k)$ . For k = 2 this would give Ge(32, 39) which is stable isotope of Ge. For k = 3 one would have (Z, N) = (35, 44) which is stable isotope of Br [25, 24].

Consider now detailed description of the reactions explaining the nuclei detected in the cathode.

1. Al(13, 14) would be produced in the reaction

$$X(3,5) + Na(11,12) \rightarrow Al(13,14) + X(1,3)$$

H(1,3) or its dark variant could be in question. Also the reaction  $X(3,5) + Na(11,12) \rightarrow Al(13,17) + p$ , where Al(12,17) is an unstable isotope of Al is possible.

The full absorption of protonic string would yield Si(14, 17) beta-decaying to P(15, 16), which is stable. Either P leaks out from the cathode or full absorption does not take place appreciably.

2. Cl(17, 18) would be produced by the sequence

$$\begin{array}{rcl} {\bf I1}:& 2X(3,5)+Na(11,12)&\to& Cl(17,18)+X(0,4) \ ,\\ {\bf I2}:& X(6,10)+Na(11,12)&\to& Cl(17,18)+X(0,4) \ . \end{array}$$

X(0,4) represents ordinary or dark tetra-neutron [19, 20, 26]. The instability of the transformation of tetra-neutron to dark matter could explain why its existence has remained controversial.

If the protonic string were absorbed completely, the resulting Cl(17, 22) - if equivalent to ordinary nucleus - would transform via beta-decays to A(18, 23) and then to K(19, 22), which is stable and detected in the target.

- 3. Ca(20, 20) would be produced in the reaction
  - $\begin{array}{rcl} {\bf I1}: & 3X(3,5)+Na(11,12) & \to & Ca(20,20)+X(0,7) & , \\ {\bf I2}: & X(9,15)+Na(11,12) & \to & Ca(20,20)+X(0,7) & . \end{array}$

X(0,7) would be dark counterpart of "septa-neutron". The complete absorption of nuclear string would produce Ca(20,27), which (if ordinary nucleus) transforms via beta decays to Sc(21,26) and then to Ti(22,25), which is stable.

#### 7.4 Comparison with the model of deuterium cold fusion

It is interesting to compare the model with the model for cold fusion [43, 44] reported using deuterium target and  $D_2O$  instead of water.

#### 7.4.1 Earlier model

- 1. The model is based on the assumption that D nuclei in the target suffer a phase transition to a state in which D nuclei become neutral so that the color bond between neutron and proton becomes negatively charged: one has effectively di-neutrons.
- 2. The mechanism of charging of color bond must either involve weak interactions or exchange of lepto- $\rho$  mesons already discussed briefly. The proposal is that the exchange of W bosons of scaled up version of weak physics is involved with the range of interactions given by atomic length scale. The exchange of  $W^+$  bosons was assumed to take place between Pd and D nuclei. This mechanism could lead to the formation of negatively charged color bonds in also ordinary nuclei.
- 3. The neutrality of exotic D nuclei allows to overcome Coulomb wall. One can understand the reported selection rules: in particular the absence of Helium isotopes (only isotopes of H are detected). The absence of gamma rays can be understood if the resulting gamma rays are dark and leak out before a transformation to ordinary gamma rays.

#### 7.4.2 Are D nuclei in Pd target dark or not?

The question whether the exotic D nuclei are dark was left pending. The recent model suggests that the answer is affirmative.

- 1. The basic difference between the two experiments would be that in Kanarev's experiments incoming nuclei are dark whereas in D fusion cathode contains the dark nuclei and cold nuclear reactions occur at the "dark side" and is preceded by ordinary-to-dark phase transition for incoming D.
- 2. D cold fusion occurs for a very restricted range of parameters characterizing target: the first parameter is doping ratio: essentially one D nucleus per one Pd nucleus is needed which would fit with the assumption that scaled up size is of the order of atom size. Temperature is second parameter. This and the fact that the situation is highly sensitive to perturbations conforms with the interpretation as a phase transition to dark matter occurring at quantum criticality.
- 3. The model for Kanarev's findings forces to consider the possibility that dark D nuclei combine to form longer strings and can also give rise to dark Li(3,5) explaining the observed nuclear transmutations in the target.

- 4. In cold nuclear reactions incoming nuclei would transform to dark nuclei (the picture as a leakage between different pages of a book like structure defined by the generalized imbedding space is helpful). The reaction would take place for dark nuclei in zoomed up nuclear physics and the reaction products would be unstable against phase transition to ordinary nuclei.
- 5. Is it then necessary to assume that target D nuclei are transformed to neutral ones (dineutrons effectively) in order to have cold nuclear reactions? Nuclear space-time sheets are scaled up. If nucleon space-time sheets are not scaled up, p and n are connected by color magnetic flux tubes of same length as in the case of ordinary nuclei but located at much larger nuclear space-time sheet. The classical analog for the quantal distribution of nucleon charges is even charge distribution in a sphere or radius R defined by the charge of the scaled up nucleus. The height of the Coulomb wall is  $E_c = e^2/R$ . If R = a, a the atomic radius, one has  $E_c \sim .1$  keV. The wall is by a factor  $10^{-4}$  lower than in ordinary nuclear collision so that the incoming D nucleus might overcome the Coulomb wall.

If Coulomb wall can be overcome, all dark variants of D + D reaction are possible. Helium nuclei have not been however detected, which supports the view that D in target is transformed to its neutral variant. Gamma rays would be dark and could leak out without detection which would explain the absence of gamma rays.

#### 7.4.3 Nuclear quantum criticality is essential

A note about the energetics of cold nuclear reactions is in order. The nuclear quantum criticality deriving from the cancellation of the contact interaction energies between nucleons for isospin singlets and scaling up of *only* nuclear space-time sheet is an absolutely essential assumption. Otherwise dark D would have much smaller binding energy scale than the visible one, and ordinary D in the Pd target could not transform to dark "di-neutron" state. Also the transformation of incoming D to its dark variant D at cathode could not take place.

#### 7.5 What happens to *OH* bonds in plasma electrolysis?

For an innocent novice one strange aspect of hydrolysis is how the OH bonds having energies of order 8 eV can be split in temperatures corresponding to photon energies of order .5 eV. Kanarev has suggested his own theory for how this could happen [47]. TGD suggests that OH bonds are transformed to their dark variants with scaled down bond energy and that there might be no essential difference between OH bond and hydrogen bond.

#### 7.5.1 The reduction of energy of OH bonds in plasma electrolysis

Kanarev has found that in plasma electrolysis the energy of OH bonds is reduced from roughly 8 eV to about .5 eV, which corresponds to the fundamental metabolic energy quantum identifiable as the zero point kinetic energy liberate as proton drops from k = 137 space-time sheet to much larger space-time sheet. In pyrolysis [67] similar reduction could occur since the pyrolysis occurs above temperature about 4000 C conforming with the energy scale of hydrogen bond.

The explanation discussed in [G2] is that there is some mechanism exciting the bonds to a state with much lower bond energy. Dark matter hierarchy [C10] suggests that the excitation corresponds to the transformation of OH bond to dark bond so that the energy scale of the state is reduced.

Also in the ordinary electrolysis of water [66] the energy of OH bonds is reduced to about 3.3 eV meaning a reduction factor of order 2. The simplest interpretation would be as a transformation of OH bonds to dark OH bond with  $\hbar \to 2\hbar$  (the scaling could be also by some other integer or even rational). The energy needed to transform the bond to dark bond could come from remote

metabolism via the dropping of dark protons from a dark variant of some sub-atomic space-time sheet with size not smaller than the size of the atomic space-time sheet to a larger space-time sheet.

 $H_{1.5}O$  anomaly suggests that 1/4 of protons of water are dark in atto-second time scale [F10] and one can imagine that both protons of water molecule can become dark under conditions defined by plasma electrolysis. Also the atomic space-time sheets and electron associated with OH bonds could become dark.

Atomic binding energies transform as  $1/\hbar^2$ . If the energy of hydrogen bond transforms like Coulombic interaction energy as given by the perturbative calculation, it is scaled down as  $1/\hbar$ since the length of the bond scales up like  $\hbar$ . Effectively  $\alpha_{em} \propto 1/\hbar$  is replaced by its scaled down value. For  $\hbar \rightarrow 2^4 \hbar_0$  the energy would scale from 8 eV to .5 eV and the standard metabolic energy quantum could induce the splitting of the dark *OH* bond. If  $2^4$  is the scale factor of  $\hbar$  for dark nuclear space-time sheets, their size would be of order  $10^{-3}$  meters. The model for cold fusion is consistent with this since what matters is different value of Planck constant for the dark nuclear space-time sheets.

There is an objection against the reduction of OH bond energy. The bonds could be split by a process in which dark nuclear reactions kick protons to k = 133 dark space-time sheet. In this case the maximal zero point kinetic energy liberated in the dropping back would be 8 eV and could induce breaking of OH bond. For  $\hbar/\hbar_0 \ge 4$  the size of k = 133 dark space-time sheet would be larger than the size of k = 137 atomic space-time sheet.

#### 7.5.2 Are hydrogen bonds dark OH bonds?

The fact that the energy of hydrogen bonds [63] is typically around .5 eV forces to ask what distinguishes hydrogen bond from dark OH bond. Could it be that the two bonds are one and the same thing so that dark OH bonds would form standard part of the standard chemistry and molecular biology? In hydrogen bond same hydrogen would be shared by the oxygen atoms of the neighboring atoms. For the first O the bond would be ordinary OH bond and for the second O its dark variant with scaled down Coulomb energy. Under conditions making possible pyrolysis and plasma electrolysis both bonds would become dark. The variation of the hydrogen bond energy could reflect the variation of the scaling factor of  $\hbar$ .

The concentration of the spectrum of bond energies on integer multiples of fundamental energy scale - or even better, on powers of 2 - would provide support for the identification. There is evidence for two kinds of hydrogen bonds with bond energies in ratio 1:2 [65, 64]: the TGD based model is discussed in [F10].

#### 7.5.3 Mechanism transforming OH bonds to their dark counterparts

The transformation of OH bonds to dark bonds would occur both in ordinary and plasma electrolysis and only the change of Planck constant would distinguish between the two situations.

- 1. Whatever the mechanism transforming OH bonds to their dark counterparts is, metabolic energy is needed to achieve this. Kanarev also claims over-unity energy production [47]. Cold fusion researchers make the same claim about ordinary electrolysis. Cold nuclear reactions between  $Na^+$  ( $K^+$ ) and dark protons and dark Li could obviously serve as the primary energy source. This would provide the fundamental reason for why NaOH or KOH must be present. Cold nuclear reactions would thus occur also in the ordinary electrolysis of water and provide the energy inducing the transition of OH bonds to dark ones by (say)  $\hbar \rightarrow 2\hbar$ transition.
- 2. One can imagine several metabolic mechanisms for the visible-to-dark transformation of HO bonds. The energy spectrum of cold nuclear reactions forms a continuum whereas the

energies needed to transform OH bonds to their dark variants presumably are in narrow bands. Therefore the energy liberated in cold nuclear reactions is not probably used as such. It is more plausible that standard metabolic energy quanta liberated in the dropping of protons (most naturally) to larger space-time sheets are utilized. The most important metabolic energy quanta for the dropping of proton come as  $E_k = 2^{k-137} k E_0$ :  $E_0 = .5 \text{ eV}$  is liberated in the dropping of proton from atomic space-time sheet (k = 137) to much larger space-time sheet (the discrete spectrum of increments of the vacuum energy in the dropping approaches this energy [D8]). The energy liberated in the dark nuclear reactions would "load metabolic batteries" by kicking the dark protons to the dark variants of k < 137 space-time sheet (the size of dark atomic space-time sheet scales like  $\hbar$ ). Their dropping to larger spacetime sheets would liberate photons with energies near to those transforming OH bonds to hydrogen bonds.

3. A signature for the standard metabolic energy quanta would be visible light at 2eV and also discrete lines below it accumulating to 2eV. Kanarev's indeed reports the presence of red light [47] as a signature for the occurrence of process.

## 7.6 A model for plasma electrolysis

Kanarev's experiments involve also other strange aspects which lead to the view that cold nuclear reactions and dark matter physics are essential aspects of not only plasma electrolysis of Kanarev but also of ordinary electrolysis and responsible for the claimed over unity energy production. Biologically important ions are produced in reactions of dark Li and  $Na^+$  and there is very strong electric voltage over the cell membrane. This inspires the question whether cold nuclear reactions serve as a metabolic energy source in living cell and are also responsible for production of ions heavier than  $Na^+$ .

#### 7.6.1 Brief description of plasma electrolysis

Electrolysis [66], pyrolysis [67], and plasma electrolysis [47, 48] of water are methods of producing free hydrogen. In pyrolysis the temperature above 4000 C leads to hydrogen and oxygen production. Oxygen production occurs also at cathode and hydrogen yield is higher than given by Faraday law for ordinary electrolysis [66].

The article of Mizuno and collaborators [48] about hydrogen production by plasma electrolysis contains a brief description of plasma electrolysis. A glow discharge occurs as the input voltage used in electrolysis is above a critical value and plasma is formed near cathode. In the arrangement of [48] plasma state is easily achieved above 140 V. If the values of temperature and current density are right, hydrogen generation in excess of Faraday's law as well as a production of oxygen at cathode (not possible in ideal electrolysis) are observed. Above 350 V the control of the process becomes difficult.

#### 7.6.2 What really happens in electrolysis and plasma electrolysis?

#### 1. Ordinary electrolysis

To understand what might happen in the plasma electrolysis consider first the ordinary electrolysis of water.

1. The arrangement involves typically the electrolyte consisting of water plus NaOH or KOH without which hydrolysis is impossible for thermodynamical reasons.

2. Electronic current flows from the anode to cathode along a wire. In electrolyte there is a current of positively charged ions form anode to cathode. At the cathode the reaction  $2H_2O + 2e^- \rightarrow 2H_2 + 2OH^-$  yields hydrogen molecules seen as bubbles in water. At the anode the reaction  $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$  is followed by the reaction  $2H^+ + 2e^- \rightarrow H_2$  and the flow of  $2e^-$  to the cathode along wire. The net outcome is hydrolysis:  $H_2O \rightarrow 2H_2 + 2O_2$ . Note that  $O_2$  is produced only at anode and  $H_2$  at both anode and cathode.

#### 2. What happens in plasma electrolysis?

In plasma electrolysis something different might happen.

- 1. Cold nuclear reactions should take place at cathode in presence of  $Na^+$  ions plus dark Li and should be in equilibrium under ordinary conditions and contribute mainly to the formation of dark OH bonds. The rate of cold nuclear reactions increases with input voltage V since the currents of  $Na^+$  and dark Li to the cathode increase. Obviously the increased rate of energy yield from dark nuclear reactions could be the real reason for the formation of plasma phase above critical voltage.
- 2. By previous considerations the reduction of electron current above critical voltage has interpretation as a transition in which electronic charge is transferred to negative charge of color bonds of dark proton strings. Existing protonic strings could grow longer and also new strings could be created from the ionized hydrogen resulting in the electrolysis of water. The increase of the size of the dark nuclei would mean increase of the cross sections for cold nuclear reactions. The liberated energy would ionized hydrogen atoms and give rise to a positive feedback loop somewhat like in ordinary nuclear reactions.
- 3. The increased energy yield in cold nuclear reactions suggests that OH bonds are transformed very effectively to dark OH bonds in the plasma region. This means that the thermal radiation can split the hydrogen bonds and induce the splitting of two water molecules to 4H and 2O and therefore production of  $2H_2 + O_2$  everywhere in this kind of region. The temperature used by Kanarev corresponds to energy between .5-1 eV [47] which conforms with the fact that OH bond energy is reduced to about .5 eV. Note that the presence of anode and cathode is not absolutely necessary if cold nuclear reactions can take place in the entire electrolyte volume and generate plasma phase by positive feedback loop.
- 4. The prediction is that Faraday's law for hydrogen production does not hold true. O/H ratio has the value r = O/H = 0 for the ordinary electrolysis at cathode. r = 1/2 holds true if local dissociation of water molecules dominates. According to [48] r increases from electrolysis value r = .066 above V = 140 V achieving the value r = .45 for V = 350 V where the system becomes unstable. Also cold nuclear reactions could contribute to hydrogen and oxygen production and affect the value of r as suggested by the large volume of gas produced in Kanarev's experiments [46].

#### 7.6.3 Over-unity energy production?

Over-unity energy production with output power 2- or even 3-fold as compared with input power has been reported from plasma electrolysis. The effectiveness is deduced from the heating of the system. Note that Mizuno reports in [48] that 10 per cent effectiveness but this is for the storage of energy to hydrogen and does not take into account the energy going to the heating of water.

The formation of higher isotopes of Li by fusing dark protons to existing dark proton strings is a good candidate for the dominant energy production mechanism. An estimate for the energy liberate in single process  $Li(3,n) + m_p + e \rightarrow Li(3,n+1) + 2\nu_8$  is obtained by using energy conservation. Here  $2\nu_8$  denotes color singlet bound state of two color octet excitations of neutrino. Since  $e_8$  and  $\nu_8$  are analogous to u and d quarks one expects that their masses are very nearly the same. This gives as the first guess  $m_{\nu_8} = m_e$  and since leptopion (color bound state of color octet electrons, [F7]) has mass  $m = 2m_e$  a good guess is  $m(2\nu_8) = 2m_{\nu_8} = 2m_e$ . The energy conservation would give

$$m(Li(3,n)) + m_p = m(Li(3,n+1)) + m_e + T(2\nu_8) + E(\gamma) .$$
(18)

Here  $T(2\nu_8)$  is the kinetic energy of  $2\nu_8$  state and  $E_{\gamma}$  is the energy of photon possibly also emitted in the process.

The process is kinematically possible if the condition

$$\Delta m = m(Li(3,n)) + m_p - m(Li(3,n+1) \ge m_e .$$
(19)

is satisfied. All incoming particles are approximated to be at rest, which is a good approximation taking into account that chemical energy scales are much lower than nuclear ones. For the left hand side one obtains from the mass difference of Li(3, n = 4) and Li(3, 5) isotopes the estimate  $\Delta m = 1.2312$  MeV for the liberated binding energy which is considerably larger than  $m_e = .51$  MeV. Hence the process is kinematically possible and  $2\nu_8$  would move with a relativistic velocity v = .81c and presumably leave the system without interacting with it.

The process can involve also the emission of photons and the maximal amount of energy that photon can carry out corresponds to  $E = \Delta m = 1.2312$  MeV. Let us denote by  $\langle E \rangle < \Delta m$  the average photonic energy emitted in the process and express it as

$$\langle E \rangle = z \Delta m \ , \ z < 1.$$
 (20)

One obtains an estimate for the production rate of photon energy (only this heats the system) from the incoming electron current I. If a fraction x(V) of the current is transformed to negatively charged color bonds the rate for energy production becomes by a little manipulation

$$\frac{P/kW}{I/A} = x(V)z \times 3.5945 .$$
 (21)

This formula allows to estimate the value of the parameter x(V)z from experimental data. Since simplest Feynman graph producing also photons is obtained by adding photon line to the basic graph, one expects that z is of order fine structure constant:

$$z \sim \alpha_{em} = 1/137 \quad . \tag{22}$$

The ratios of the excess power for a pair of (V, I) values should satisfy the condition

$$\frac{P(V_1)I(V_2)}{P(V_2)I(V_1)} = \frac{x(V_1)}{x(V_2)} .$$
(23)

x(V) should be deducible as a function of voltage using these formulas if the model is correct.

These formulae allow to compare the predictions of the model with the experimental results of Naudin for Mizuno-Omori Cold Fusion reactor [49]. The following table gives the values of  $\epsilon = x(V)z$  and ratios  $x(V(n))/x(V(n_1))$  deduced from the data tabulated by Naudin [50] for the various series of experiments using the formulae above.

- 1. Most values of x(V)z are in the range .03 .12. z = 1/137 would give  $x(V)z \le 1/137$  so that order of magnitude is predicted correctly. One cannot over-emphasize this result.
- 2. Apart from some exceptions the values look rather reasonable and do not vary too much. If one neglects the exceptional values, ones has  $x_{max}(V)/x_{min}(V) < 4$ . n = 1, 5, 8, 9, 29 correspond to exceptionally small values of x(V). Perhaps cold fusion is not present for some reason. The output power is smaller than input power for n = 9 and n = 29.

| n  | Voltage/V | Current/A | x(V)z | x(V(n))/x(V(2)) |
|----|-----------|-----------|-------|-----------------|
| 1  | 185       | 8.56      | 0.005 | .145            |
| 2  | 147       | 2.45      | 0.036 | 1.00            |
| 3  | 215       | 2.10      | 0.046 | 1.30            |
| 4  | 220       | 9.32      | 0.044 | 1.22            |
| 5  | 145       | 1.06      | 0.001 | .03             |
| 6  | 213       | 1.40      | 0.05  | 1.34            |
| 7  | 236       | 1.73      | 0.08  | 2.18            |
| 8  | 148       | .83       | 0.01  | .21             |
| 9  | 148       | 1.01      | -0.00 | -0.008          |
| 10 | 221       | 1.31      | 0.03  | .87             |
| 11 | 279       | 3.03      | 0.05  | 1.46            |
| 12 | 200       | 8.58      | 0.03  | 0.89            |
| 13 | 199       | 7.03      | 0.07  | 1.91            |
| 14 | 215       | 9.78      | 0.04  | 1.07            |
| 15 | 207       | 8.34      | 0.03  | 0.74            |
| 16 | 247       | 2.19      | 0.06  | 1.69            |
| 17 | 260       | 2.20      | 0.02  | 0.55            |
| 18 | 257       | 2.08      | 0.03  | 0.71            |
| 19 | 195       | 2.95      | 0.06  | 1.59            |
| 20 | 198       | 2.62      | 0.07  | 1.98            |
| 21 | 182       | 2.40      | 0.05  | 1.26            |
| 22 | 212       | 2.27      | 0.06  | 1.74            |
| 23 | 259       | 2.13      | 0.12  | 3.22            |
| 24 | 260       | 4.83      | 0.04  | 1.05            |
| 25 | 209       | 3.53      | 0.04  | 1.16            |
| 26 | 230       | 4.99      | 0.10  | 2.79            |
| 27 | 231       | 5.46      | 0.09  | 2.53            |
| 28 | 233       | 5.16      | 0.10  | 2.85            |
| 29 | 155       | 4.60      | -0.00 | -0.04           |
| 30 | 220       | 4.44      | 0.11  | 2.95            |
| 31 | 256       | 5.25      | 0.05  | 1.36            |
| 32 | 211       | 3.68      | 0.03  | .97             |
| 33 | 201       | 3.82      | 0.04  | 1.06            |

Table 3. The values of x(V)z and x(V(n))/x(V(1)) deduced from the data of *Cold Fusion* reaction-Experimental test results on June 25, 2003 by JL Naudin at http://jlnlabs.online.fr/cfr/html/cfrdatas.htm.

#### 7.6.4 Has living matter invented cold nuclear physics?

Intriguingly, the ions  $Na^+$ ,  $Cl^-$ ,  $K^+$ ,  $Ca^{++}$  detected by Mizuno in the cathode in Kanarev's experiments [46] correspond to the most important biological ions. There is also a considerable evidence for the occurrence of nuclear transmutations in living matter [51, 52]. For instance, Kervran claims that it is not possible to understand where the Ca needed to form the shells of eggs comes from. A possible explanation is that dark nuclear reactions between  $Na^+$  and dark Litium produced the needed Ca.

There is extremely strong electric field through cell membrane (resting voltage is about .06 V). The acceleration of electrons in this field could generate plasma phase and creation of dark Li nuclei via a positive feedback loop. This could mean that cold nuclear reactions serve also in living cell as a basic metabolic energy source (possibly in the dark sector) and that also biologically important ions result as products of cold nuclear reactions.

#### 7.7 Comparison with the reports about biological transmutations

Kervran's book "Biological Transmutations" [51] contains a surprisingly detailed summary about his work with biological transmutations and it is interesting to find whether the proposed model could explain the findings of Kervran. TGD suggests two general mechanisms.

- 1. The nuclear reactions involving dark Li, C, and F predicted to be present in living matter.
- 2. Nuclear fusions made possible by a temporary transformation of ordinary nuclear space-time sheets to dark ones with much larger size so that Coulomb wall is reduced considerably. The nuclear reaction might proceed if it is energetically possible. Almost any reaction  $A+B \rightarrow C$  is possible via this mechanism unless the nuclei are not too heavy.

#### 7.7.1 Fortuitous observations

In his childhood Kervran started to wonder why hens living in a limestone poor region containing thus very little calcium in ground and receiving no calcium in their nutrition could develop the calcium required by eggs and by their own bones. He noticed that hens had the habit of eating mica, which contains silicon. Later this led to the idea that Si could somehow transmute to Ca in living matter. In the proposed model this could correspond to fusion of  $Si(14, 14) + \mathbf{C}(\mathbf{6}, \mathbf{6}) \rightarrow Ca(20, 20)$ which occurs spontaneously.

Second fortuitous observation were the mysterious CO poisonings by welders working in factory. After careful studies Kervran concluded that CO must be produced endogenously and proposed that the inhaled air which had been in contact with incandescent iron induces the transformation  $N_2 \rightarrow CO$  conserving both neuron and neutron number. This transformation might be understood in TGD context if the nuclear space-time sheets are part of time in dark with much larger size so that a direct contact becomes possible for nuclear space-time sheets and Coulomb wall is reduced so that the reaction can proceed with some probability if energetically possible. The thermal energy received from hot iron might help to overcome the Coulomb barrier. The mass difference m(2N) - m(O) - m(C) = 10.45 MeV allows this reaction to occur spontaneously.

#### 7.7.2 Examples of various anomalies

Kervran discusses several plant anomalies. The ashes of plants growing in Si rich soil contain more Ca than they should: this transmutation has been already discussed. The ashes of a plant growing on Cu fibres contain no copper but 17 per cent of iron oxides in addition to other elements which could not have come from the rain water. The reaction  $Cu(58) + \text{Li}(3, 4) \rightarrow Fe(26, 32) + C(6, 6)$  would liberate energy of 11.5 MeV.

There are several mineral anomalies.

- 1. Dolomite rock is formed inside limestone rocks which would suggest the transmutation of Ca(20, 20) into Mg(12, 12). The nuclear reaction  $Ca(20, 20) + \text{Li}(3, 4) \rightarrow Mg(12, 12) + Na(11, 12)$  would liberate energy of 3.46 MeV. Ca emerges from Si in soil and in what Kervran refers to a "sickness of stone". The candidate reaction has been already discussed.
- 2. Graphite is found in siliceous rocks. Kervran proposes the reaction  $Si \to C + O$ . m(Si) m(C) M(O) = -16.798 MeV does not allow this reaction to proceed spontaneously but the reaction  $Si + \text{Li} \to C + Na$  liberates the energy 2.8880 MeV.
- 3. Kervran mentions the reaction  $O + O \rightarrow S$  as a manner to produce sulphur from oxygen. This reaction is obviously energetically favored.

Kervran discusses the transmutations  $Na \to K$  and  $Na \to Ca$  occurring also in plasma electrolysis and explained by TGD based model. Further transmutations are  $Na \to Mg$  and  $Mg \to Ca$ .  $Na \to Mg$  could correspond to the reaction  $Na(11, 12) + \text{Li}(\mathbf{3}, \mathbf{2}) \to Mg(12, 12) + He(2, 2)$  favored by the high binding energy per nucleon for <sup>4</sup>He (7.072 MeV).  $Mg \to Ca$  would correspond to the reaction  $Mg + O \to Ca$ , which obviously liberates energy.

# 7.8 Are the abundances of heavier elements determined by cold fusion in interstellar medium?

According to the standard model, elements not heavier than Li were created in Big Bang. Heavier elements were produced in stars by nuclear fusion and ended up to the interstellar space in supernova explosions and were gradually enriched in this process. Lithium problem forces to take this theoretical framework with a grain of salt.

The work of Kervran [51] suggests that cold nuclear reactions are occurring with considerable rates, not only in living matter but also in non-organic matter. Kervran indeed proposes that also the abundances of elements at Earth and planets are to high degree determined by nuclear transmutations and discusses some examples. For instance, new mechanisms for generation of O and Si would change dramatically the existing views about evolution of planets and prebiotic evolution of Earth.

#### 7.8.1 Are heavier nuclei produced in the interstellar space?

TGD based model is consistent with the findings of Kervran and encourages to a consider a simple model for the generation of heavier elements in interstellar medium. The assumptions are following.

- 1. Dark nuclei X(3k, n), that is nuclear strings of form Li(3, n), C(6, n), F(9, n), Mg(12, n), P(15, n), A(18, n), etc..., form as a fusion of Li strings. n = Z is the most plausible value of n. There is also  ${}^{4}He$  present but as a noble gas it need not play an important role in condensed matter phase (say interstellar dust). The presence of water necessitates that of Li(3, n) if one accepts the proposed model as such.
- 2. The resulting nuclei are in general stable against spontaneous fission by energy conservation. The binding energy of He(2,2) is however exceptionally high so that alpha decay can occur in dark nuclear reactions between X(3k,n) allowed by the considerable reduction of the Coulomb wall. The induced fissions  $X(3k,n) \rightarrow X(3k-2,n-2) + He(2,2)$  produces nuclei with atomic number  $Z \mod 3 = 1$  such as Be(4,5), N(7,7), Ne(10,10), Al(13,14), S(16,16), K(19,20),... Similar nuclear reactions make possible a further alpha decay of  $Z \mod 3 = 1$  nuclei to give nuclei with  $Z \mod 2$  such as B(5,6), O(8,8), Na(11,12), Si(14,14), Cl(17,18), Ca(20,20),... so that most stable isotopes of light nuclei could result in these fissions.

3. The dark nuclear fusions of already existing nuclei can create also heavier Fe. Only the gradual decrease of the binding energy per nucleon for nuclei heavier than Fe poses restrictions on this process.

The table below allows the reader to build a more concrete view about how the heavier nuclei might be generated via the proposed mechanisms.

| H(1,0)    |            |            |            |          |           |            | He(2,2)    |
|-----------|------------|------------|------------|----------|-----------|------------|------------|
| Li(3,4)   | Be(4,5)    | B(5,6)     | C(6,6)     | N(7,7)   | O(8,8)    | F(9,10)    | Ne(10, 10) |
| Na(11,12) | Mg(12, 12) | Al(13, 14) | Si(14, 14) | P(15,16) | S(16, 16) | Cl(17, 18) | A(18,22)   |
| K(19,20)  | Ca(20, 20) |            |            |          |           |            |            |

Table 4. The table gives the most abundant isotopes of stable nuclei.

#### 7.8.2 The abundances of nuclei in interstellar space should not depend on time

The basic prediction of TGD inspired model is that the abundances of the nuclei in the interstellar space should not depend on time if the rates are so high that equilibrium situation is reached rapidly. The  $\hbar$  increasing phase transformation of the nuclear space-time sheet determines the time scale in which equilibrium sets on. Standard model makes different prediction: the abundances of the heavier nuclei should gradually increase as the nuclei are repeatedly re-processed in stars and blown out to the interstellar space in super-nova explosion.

Amazingly, there is empirical support for this highly non-trivial prediction [55]. Quite surprisingly, the 25 measured elemental abundances (elements up to Sn(50, 70) (tin) and Pb(82, 124)(lead)) of a 12 billion years old galaxy turned out to be very nearly the same as those for Sun. For instance, oxygen abundance was 1/3 from that from that estimated for Sun. Standard model would predict that the abundances should be .01-.1 from that for Sun as measured for stars in our galaxy. The conjecture was that there must be some unknown law guaranteing that the distribution of stars of various masses is time independent. The alternative conclusion would be that heavier elements are created mostly in interstellar gas and dust.

# 7.8.3 Could also "ordinary" nuclei consist of protons and negatively charged color bonds?

The model would strongly suggest that also ordinary stable nuclei consist of protons with proton and negatively charged color bond behaving effectively like neutron. Note however that I have also consider the possibility that neutron halo consists of protons connected by negatively charged color bonds to main nucleus. The smaller mass of proton would favor it as a fundamental building block of nucleus and negatively charged color bonds would be a natural manner to minimizes Coulomb energy. The fact that neutron does not suffer a beta decay to proton in nuclear environment provided by stable nuclei would also find an explanation.

- 1. Ordinary shell model of nucleus would make sense in length scales in which proton plus negatively charged color bond looks like neutron.
- 2. The strictly nucleonic strong nuclear isospin is not vanishing for the ground state nuclei if all nucleons are protons. This assumption of the nuclear string model is crucial for quantum criticality since it implies that binding energies are not changed in the scaling of  $\hbar$  if the length of the color bonds is not changed. The quarks of charged color bond however give rise to a compensating strong isospin and color bond plus proton behaves in a good approximation like neutron.
- 3. Beta decays might pose a problem for this model. The electrons resulting in beta decays of this kind nuclei consisting of protons should come from the beta decay of the d-quark

neutralizing negatively charged color bond. The nuclei generated in high energy nuclear reactions would presumably contain genuine neutrons and suffer beta decay in which d quark is nucleonic quark. The question is whether how much the rates for these two kinds of beta decays differ and whether existing facts about beta decays could kill the model.

### 7.9 Tests and improvements

#### 7.9.1 Test for the hypothesis about new physics of water

The model involves hypothesis about new physics and chemistry related to water.

- 1. The identification of hydrogen bond as dark OH bond could be tested. One could check whether the qualitative properties of bonds are consistent with each. One could try to find evidence for quantization of bond energies as integer multiples of same energy (possible power of two multiples).
- 2.  $H_{1.5}O$  formula in atto-second scale should be tested further and one could look whether similar formula holds true for heavy water so that sequences of dark protons might be replaced with sequences of dark deuterons.
- 3. One could find whether plasma electrolysis takes place in heavy water.

#### 7.9.2 Testing of the nuclear physics predictions

The model in its simplest form assumes that only dark Li, C, F, etc. are present in water. This predicts quite specific nuclear reactions in electrolyte and target and reaction product. For both target and electrolyte isotopes of nuclei with atomic number Z + k3 are predicted to result in cold fusion reactions if energetically possible. For a target heavier than Fe also fission reactions might take place.

The estimates for the liberated energies are obtained assuming that dark nuclei have same binding energies as ordinary ones. In some cases the liberated energy is estimated using the binding energy per nucleon for a lighter isotope. Ordinary nuclei with maximal binding energy correspond to nuclear strings having  ${}^{4}He$  or its variants containing negatively charged color bonds as a basic structural unit. One could argue that gluing nLi(3,5) or its isotope does not give rise to a ground state so that the actual energy liberated in the process is reduced so that process might be even impossible energetically. This could explain the absence of *Ge* from *Fe* cathode and the absence of Ti, Mn, and Ni in KOH plasma electrolysis [46].

**Cathode:** For cathode Fe and W have been used. For Fe the fusions  $Fe + Li \rightarrow Cu + 28.84 \ MeV$  and  $Fe + C \rightarrow Ge + 21.64 \ MeV$  are possible energetically. Mizuno does not report the presence of Ge in Fe target. The reduction of the binding energy of dark C(6, 10) by 21.64 MeV (1.35 MeV per nucleon) would make second reaction impossible but would still allow Li + C and Na + C fusion. Second possibility is that Ge containing negatively charged color bonds has smaller binding energy per nucleon than ordinary Ge.  $W + Li \rightarrow Ir$  would liberate 8.7 MeV if binding energy of dark Li is same as of ordinary Li.

**Electrolyte**: Consider electrolytes containing ions  $X^+$  with atomic number Z. If X is lighter than Fe, the isotopes of nuclei with atomic number Z + 3k might be produced in fusion reactions nLi + X. X = Li, K, Na has one electron at s-shell whereas B, Al, Cr, ... has one electron at p-shell.

| Reaction | $\mathbf{Li} + Li \to C$          | $\mathbf{C} + Li \to F$          | $\mathbf{F} + Li \rightarrow Mg$ |
|----------|-----------------------------------|----------------------------------|----------------------------------|
| E/MeV    | 27.1                              | 24.0                             | 31.5                             |
|          | $\mathbf{Li} + Na \rightarrow Si$ | $\mathbf{C} + Na \rightarrow Cl$ | $\mathbf{F} + Na \rightarrow Ca$ |
| E/MeV    | 34.4                              | 30.5                             | 33.7                             |
|          | $\mathbf{Li} + K \to Ti$          | $\mathbf{C} + K \to Mn$          | $\mathbf{F} + K \rightarrow Ni$  |
| E/MeV    | 32.2                              | 33.6                             | 32.7                             |

Table 5. The estimates for the energies liberated in fusions of dark nuclei of water and the ion of electrolyte. Boldface refers to dark nuclei Li(3,5), C(6,10), and F(9,15).

#### 7.9.3 Relationship to the model of Widom and Larsen and further tests

W. Guglinski kindly informed me about the theory of cold fusion by Widom and Larsen [54]. This theory relies on standard nuclear physics. The theory is reported to explain cold fusion reaction products nicely in terms of the transformation of electrons and protons to very low energy neutrons which can overcome the Coulomb barrier. The problem of the theory is that very high energy electrons are required since one has Q = .78 MeV for  $e + p \rightarrow n$  and Q = -3.0 MeV for  $e + D \rightarrow n + n$ . It is difficult to understand how so energetic electrons could result in ordinary condensed matter.

Since proton plus color bond is from the point of view of nuclear physics neutron and the fusion reactions would obey ordinary nuclear physics rules, the predictions of TGD are not expected to deviate too much from those of the model of Widom and Larsen.

An important class of predictions relate to ordinary nuclear physics. Tetra-neutron could be alpha particle with two negatively charged color bonds and neutron halos could consist of protons connected to nucleus by negatively charged color bonds. This could reduce the binding energy considerably.

Cold nuclear fusion might also provide an in situ mechanism for the formation of ores. Nuclear ores in places where they should not exist but involving remnants of organic matter would be the prediction. Cold fusion has a potential for a technology allowing to generate some metals artificially.

#### 7.9.4 How to optimize the energy production?

The proposed model for the plasma electrolysis suggests following improvements to the experimental arrangement.

The production of energy in process is due to three reactions: 1) Li + p in plasma. 2) Li + Fe/W... in target, and 3) Li + Na/K... in plasma. The model suggests that 1) dominates so that basic process would occur in plasma rather than cathode.

- 1. Since W does not evaporate so easily, it is better material for cathode if the production of dark Li dominates energy production.
- 2. Cathode could be replaced with a planar electrode with fractal peaky structure generating the required strong electric fields. This could increase the effectiveness of the energy production by increasing the effective area used.
- 3. Since  $H_2O \rightarrow OH^- + p$  is required by the generation of dark *Li* sequences. The energy feed must be able to follow the rapidly growing energy needs of this reaction which seems to occur as bursts.

4. The prediction is that the output power is proportional to electron current rather than input power. This suggests minimization of input power by minimizing voltage. This requires maximization of electron conductivity. Unfortunately, the transformation of electrons to  $OH^-$  ions as charge carriers reduces conductivity.

## 7.10 Burning salt water by radio-waves and cold fusion by plasma electrolysis

John Kanzius has made a strange discovery [53]: salt water in the test tube radiated by radio waves at harmonics of a frequency f=13.56 MHz burns. Temperatures about 1500 C, which correspond to .17 eV energy have been reported. One can radiate also hand but nothing happens. The original discovery of Kanzius was the finding that radio waves could be used to cure cancer by destroying the cancer cells. The proposal is that this effect might provide new energy source by liberating chemical energy in an exceptionally effective manner. The power is about 200 W so that the power used could explain the effect if it is absorbed in resonance like manner by salt water. In the following it is proposed that the cold nuclear reactions are the source of the energy.

#### 7.10.1 Do radio waves of large Planck constant transform to microwaves in the process?

The energies of photons involved are very small, multiples of  $5.6 \times 10^{-8}$  eV and their effect should be very small since it is difficult to imagine what resonant molecular transition could cause the effect. This leads to the question whether the radio wave beam could contain a considerable fraction of dark photons for which Planck constant is larger so that the energy of photons is much larger. The underlying mechanism would be phase transition of dark photons with large Planck constant to ordinary photons with shorter wavelength coupling resonantly to some molecular degrees of freedom and inducing the heating. Microwave oven of course comes in mind immediately.

1. The fact that the effects occur at harmonics of the fundamental frequency suggests that rotational states of molecules are in question as in microwave heating. The formula for the rotational energies [57] is

$$E(l) = E_0 \times (l(l+1)), \quad E_0 = \hbar_0^2 / 2\mu R^2, \quad \mu = m_1 m_2 / (m_1 + m_2)$$

Here R is molecular radius which by definition is deduced from the rotational energy spectrum. The energy inducing the transition  $l \to l + 1$  is  $\Delta E(l) = 2E_0 \times (l + 1)$ .

- 2. *NaCl* molecules crystallize to solid so that the rotational heating of *NaCl* molecules cannot be in question.
- 3. The microwave frequency used in microwave ovens is 2.45 GHz giving for the Planck constant the estimate 180.67 equal to 180 with error of .4 per cent. The values of Planck constants for  $(\hat{M}^4/G_a) \times \hat{CP}_2 \times \hat{G}_b$  option (factor space of  $M^4$  and covering space of  $CP_2$  maximizing Planck constant for given  $G_a$  and  $G_b$ ) are given by  $\hbar/\hbar_0 = n_a n_b$ .  $n_a n_b = 4 \times 9 \times 5 = 180$  can result from the number theoretically simple values of quantum phases  $exp(i2\pi/n_i)$  corresponding to polygons constructible using only ruler and compass. For instance, one could have  $n_a = 2 \times 3$ and  $n_b = 2 \times 3 \times 5$ .

#### 7.10.2 Connection with plasma electrolysis?

The burning of salt water involves also the production of  $O_2$  and  $H_2$  gases. Usually this happens in the electrolysis of water [66]. The arrangement involves typically electrolyte consisting of water plus NaOH or KOH present also now but anode, cathode and electronic current absent. The proposed mechanism of electrolysis involving cold nuclear reactions however allows the splitting of water molecules to  $H_2$  and  $O_2$  even without these prerequisites.

The thermal radiation from the plasma created in the process has temperature about 1500 C which correspond to energy about .17 eV: this is not enough for splitting of bonds with energy .5 eV. The temperature in salt water could be however considerably higher.

The presence of visible light suggests that plasma phase is created as in plasma electrolysis. Dark nuclear reactions would provide the energy leading to ionization of hydrogen atoms and subsequent transformation of the electronic charge to that of charged color bonds in protonic strings. This in turn would increase the rate of cold nuclear reactions and the liberated energy would ionize more hydrogen atoms so that a positive feedback loop would result.

Cold nuclear reactions should provide the energy transforming hydrogen bonds to dark bonds with energy scaled down by a factor of about  $2^{-6}$  from say 8 eV to .125 eV if T = 1500C is accepted as temperature of water. If Planck constant is scaled up by the factor r = 180 suggested by the interpretation in terms of microwave heating, the scaling of the Planck constant would reduce the energy of OH bonds to about .04 eV, which happens to be slightly below the energy assignable to the cell membrane resting potential. The scaling of the size of nuclear space-time sheets of D by factor r = 180 is consistent with the length of color bonds of order  $10^{-12}$  m. The role of microwave heating would be to preserve this temperature so that the electrolysis of water can continue. Note that the energy from cold nuclear reactions could partially escape as dark photons.

There are some questions to be answered.

- 1. Are the radio wave photons dark or does water which is a very special kind of liquid induce the transformation of ordinary radio wave photons to dark photons by fusing 180 radio wave massless extremals (MEs) to single ME. Does this transformation occur for all frequencies? This kind of transformation might play a key role in transforming ordinary EEG photons to dark photons and partially explain the special role of water in living systems.
- 2. Why the radiation does not induce a spontaneous combustion of living matter which also contains  $Na^+$  and other ions. A possible reason is that  $\hbar$  corresponds to Planck constant of dark Li which is much higher in living water. Hence the energies of dark photons do not induce microwave heating.
- 3. The visible light generated in the process has yellow color. The mundane explanation is that the introduction Na or its compounds into flame yields bright yellow color due to so called sodium D-lines [68] at 588.9950 and 589.5924 nm emitted in transition from 3p to 3s level. Visible light could result as dark photons from the dropping of dark protons from dark space-time sheets of size at least atomic size to larger dark space-time sheets or to ordinary space-time sheets of same size and de-cohere to ordinary light. Yellow light corresponds roughly to the rather narrow energy range .96-2.1 eV  $(.59 .63 \ \mu m)$ . The metabolic quanta correspond to jumps to space-time sheets of increasing size give rise to the fractal series  $E/eV = 2 \times (1-2^{-n})$  for transitions  $k = 135 \rightarrow 135 + n$ ,  $n = 1, 2, \dots$  [D8]. For n = 3, 4, 5 the lines have energies 1.74, 1.87, 1.93 eV and are in the visible red  $(\lambda/\mu m = .71, .66, .64)$ . For n > 5 the color is yellow. In Kanarev's experiments the color is red which would mean the dominance of n < 6 lines: this color is regarded as a signature of the plasma electrolysis. In the burning of salt water the light is yellow [53], which allows to consider the possibility that yellow light is partially due to n > 5 lines. Yellow color could also result from the dropping  $k = 134 \rightarrow 135 \ (n = 1)$ .

#### 7.11 GSI anomaly

"Jester" wrote a nice blog posting titled *Hitchhikers-guide-to-ghosts-and-spooks in particle physics* summarizing quite a bundle of anomalies of particle physics and also one of nuclear physics-known as GSI anomaly. The abstract of the article *Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like*<sup>140</sup>*Pr and*<sup>142</sup>*Pm Ions* [69] describing the anomaly is here.

We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like <sup>140</sup>Pr<sub>j</sub>sup<sub>i</sub>59+<sub>i</sub>/sup<sub>i</sub> and <sup>142</sup>Pm<sub>j</sub>sup<sub>i</sub>60+<sub>i</sub>/sup<sub>i</sub> ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.

This brings in mind the nuclear decay rate anomalies which I discussed earlier in the blog posting *Tritium beta decay anomaly and variations in the rates of radioactive processes* and in [F8]. These variations in decay rates are in the scale of year and decay rate variation correlates with the distance from Sun. Also solar flares seem to induce decay rate variations.

The TGD based explanation [F8] relies on nuclear string model in which nuclei are connected by color flux tubes having exotic variant quark and antiquark at their ends (TGD predicts fractal hierarchy of QCD like physics). These flux tubes can be also charged: the possible charges  $\pm 1, 0$ . This means a rich spectrum of exotic states and a lot of new low energy nuclear physics. The energy scale corresponds to Coulomb interaction energy  $\alpha_{em}m$ , where m is mass scale of the exotic quark. This means energy scale of 10 keV for MeV mass scale. The well-known poorly understood X-ray bursts from Sun during solar flares in the wavelength range 1-8 A correspond to energies in the range 1.6-12.4 keV -3 octaves in good approximation- might relate to this new nuclear physics and in turn might excite nuclei from the ground state to these excited states and the small mixture of exotic nuclei with slightly different nuclear decay rates could cause the effective variation of the decay rate.

The question is whether there could be a flux of X rays in time scale of 7 seconds causing the rate fluctuation by the same mechanism also in GSI experiment. For instance, could this flux relate to synchrotron radiation. I could no identify any candidate for this periodicity from the article. In any case, the prediction is what might be called X ray nuclear physics and artificial X ray irradiation of nuclei would be an easy manner to kill or prove the general hypothesis.

One can imagine also another possibility.

- 1. The first guess is that the transitions between ordinary and exotic states of the ion are induced by the emission of exotic W boson between nucleon and exotic quark so that the charge of the color bond is changed. In standard model the objection would be that classical W fields do not make sense in the length scale in question. The basic prediction deriving from induced field concept (classical ew gauge fields correspond to the projection of CP<sub>2</sub> spinor curvature to the space-time surface) is however the existence of classical long range gauge fields- both ew and color. Classical W field can induce charge entanglement in all length scales and one of the control mechanisms of TGD inspired quantum biology relies on remote control of charge densities in this manner. Also the model of cold fusion could involve similar oscillating time like entanglement allowing the bombarding nucleus to penetrate to the nucleus when proton has transformed to neuron in good approximation and charge is delocalized to the color bond having much larger size.
- 2. In the approximation that one has two-state system, this interaction can be modelled by using as interaction Hamiltonian hermitian non-diagonal matrix V, which can be written as  $V\sigma_x$ , where  $\sigma_x$  is Pauli sigma matrix. If this process occurs coherently in time scales longer than  $\hbar/V$ , an oscillation with frequency  $\omega = V/\hbar$  results. Since weak interactions are in question 7 second modulation period might make sense.

The hypothesis can be tested quantitatively.

1. The weak interaction Coulomb potential energy is of form

$$\frac{V(r)}{\hbar} = \alpha_W \frac{exp(-m_W r)}{r} , \qquad (24)$$

where r is the distance between nucleon center of mass and the end of color flux tube and therefore of order proton Compton length  $r_p$  so that one can write

$$r = x \times r_p$$
 .

where x should be of order unity but below it.

2. The frequency  $\omega = 2\pi/\tau = V/\hbar$  must correspond to 14 seconds, twice the oscillation period of the varying reaction rate. By taking W boson Compton time  $t_W$  as time unit this condition can be written as

$$\begin{array}{l} \frac{\alpha_W exp(-y)}{y} = \frac{t_W}{\tau} \\ y = x \frac{r_p}{r_W} = x \frac{m_W}{m_p} \simeq 80 \times x \\ \alpha_W = \alpha_{em}/sin^2 \theta_W \end{array},$$

3. This gives the condition

$$\frac{exp(-y)}{y} = \frac{t_p}{\tau} \times \frac{\sin^2 \theta_W}{80 \times \alpha_{em}} .$$
(25)

This allows to solve y since the left hand side is known. Feeding in proton Compton length  $r_p = 1.321 \times 10^{-15}$  m and  $sin^2 \theta_W = .23$  one obtains that the distance between flux tube end and proton cm is x = .6446 times proton Compton length, which compares favorably with the guess  $x \simeq 1$  but smaller than 1. One must however notice that the oscillation period is exponentially sensitive to the value of x. For instance, if the charge entanglement were between nucleons, x > 1 would hold true and the time scale would be enormous. Hence the simple model requires new physics and predicts correctly the period of the oscillation under very reasonable assumptions.

- 4. One could criticize this by saying that the masses of two states differ by amount which is of order 10 keV or so. This does not however affect the argument since the mass corresponds to the diagonal non-interaction part of the Hamiltonian contributing only rapidly oscillating phases whereas interaction potential induces oscillating mixing as is easy to see in interaction picture.
- 5. If one believes in the hierarchy of Planck constants and p-adically scaled variants of weak interaction physics, charge entanglement would be possible in much longer length scales and the time scale of it raises the question whether qubits could be realized using proton and neutron in quantum computation purposes. I have also proposed that charge entanglement could serve as a mechanism of bio-control allowing to induce charge density gradients from distance in turn acting as switches inducing biological functions.

So: it happened again! Again I have given a good reason for my learned critics to argue that TGD explains everything so that I am a crackpot and so on and so on. Well... after a first feeling of deep shame I dare to defend myself. In the case of standard model explanatory power has not been regarded as an argument against the theory but my case is of course different since I do not have any academic position since my fate is to live in the arctic scientific environment of Finland. And if my name were Feynman, this little argument would be an instant classic. But most theoreticians are just little opportunists building their career and this does not leave much room for intellectual honesty.

# 8 Dark nuclear strings as analogs of DNA-, RNA- and aminoacid sequences and baryonic realization of genetic code?

The minimal option is that virtual DNA sequences have flux tube connections to the lipids of the cell membrane so that their quality as hardware of tqc can be tested but that there is no virtual variant of transcription and translation machinery. One can however ask whether also virtual amino-acids could be present and whether this could provide deeper insights to the genetic code.

- 1. Water molecule clusters are not the only candidates for the representatives of linear molecules. An alternative candidate for the virtual variants of linear bio-molecules are dark nuclei consisting of strings of scaled up dark variants of neutral baryons bound together by color bonds having the size scale of atom, which I have introduced in the model of cold fusion and plasma electrolysis both taking place in water environment. Colored flux tubes defining braidings would generalize this picture by allowing transversal color magnetic flux tube connections between these strings.
- 2. Baryons consist of 3 quarks just as DNA codons consist of three nucleotides. Hence an attractive idea is that codons correspond to baryons obtained as open strings with quarks connected by two color flux tubes. The minimal option is that the flux tubes are neutral. One can also argue that the minimization of Coulomb energy allows only neutral dark baryons. The question is whether the neutral dark baryons constructed as string of 3 quarks using neutral color flux tubes could realize 64 codons and whether 20 aminoacids could be identified as equivalence classes of some equivalence relation between 64 fundamental codons in a natural manner.

The following model indeed reproduces the genetic code directly from a model of dark neutral baryons as strings of 3 quarks connected by color flux tubes.

- 1. Dark nuclear baryons are considered as a fundamental realization of DNA codons and constructed as open strings of 3 dark quarks connected by two colored flux tubes, which can be also charged. The analogs of DNA -, RNA -, and of amino-acid sequences would in turn correspond to sequences of dark baryons. It is assumed that the net charge of the dark baryons vanishes so that Coulomb repulsion is minimized.
- 2. One can classify the states of the open 3-quark string by the total charges and spins associated with 3 quarks and to the two color bonds. Total em charges of quarks vary in the range  $Z_B \in$  $\{2, 1, 0, -1\}$  and total color bond charges in the range  $Z_b \in \{2, 1, 0, -1, -2\}$ . Only neutral states are allowed. Total quark spin projection varies in the range  $J_B = 3/2, 1/2, -1/2, -3/2$ and the total flux tube spin projection in the range  $J_b = 2, 1, -1, -2$ . If one takes for a given total charge assumed to be vanishing one representative from each class  $(J_B, J_b)$ , one obtains  $4 \times 5 = 20$  states which is the number of amino-acids. Thus genetic code might be realized at the level of baryons by mapping the neutral states with a given spin projection to single

representative state with the same spin projection. The problem is to find whether one can identify the analogs of DNA, RNA and aminoacids as baryon like states.

#### 8.1 States in the quark degrees of freedom

Consider first the states of dark baryons in quark degrees of freedom. These states can be constructed as representations of rotation group and strong isospin group.

- 1. The tensor product  $2 \otimes 2 \otimes 2$  is involved in both cases. Without any additional constraints this tensor product decomposes as  $4 \oplus 2 \oplus 2$ : 8 states altogether. This is what one should have for DNA and RNA candidates. If one has only identical quarks *uuu* or *ddd*, one obtains only the 4-D representation corresponding to completely symmetric representation. These 4 states correspond to a candidate for amino-acids. Thus RNA and DNA should correspond to states of type uud and ddu and aminoacids to states of type uuu or ddd. What this means physically will be considered later.
- 2. It is known that only representations with isospin 3/2 and spin 3/2 ( $\Delta$  resonance) and isospin 1/2 and spin 1/2 (proton and neutron) are realized as free baryons. Now of course a dark -possibly p-adically scaled up variant of QCD is considered so that more general baryonic states are possible. The spin statistics problem which forced to introduce quark color strongly suggests that the construction of the codons as sequences of 3 nucleons is not a good idea.
- 3. Second nucleon like spin doublet call it  $2_{odd}$  has wrong parity in the sense that it would require L = 1 ground state for two identical quarks (*uu* or *dd* pair). Dropping  $2_{odd}$  and using only  $4 \oplus 2$  for the rotation group would give degeneracies (1, 2, 2, 1) and 6 states only. All the representations in  $4 \oplus 2 \oplus 2_{odd}$  to get 8 states with a given quark charge and one should transform the wrong parity doublet to positive parity doublet somehow. Since open string geometry breaks rotational symmetry to a subgroup of rotations acting along the direction of the string, the attractive possibility is to add a stringy excitation with angular momentum projection  $L_z = -1$  to the wrong parity doublet so that the parity comes out correctly.  $L_z = -1$  orbital angular momentum for the relative motion of *uu* or *dd* quark pair in the open 3-quark string would be in question. The degeneracies for spin projection value  $J_z = 3/2, ..., -3/2$  are (1, 2, 3, 2). Genetic code means spin projection mapping the states in  $4 \oplus 2 \oplus 2_{odd}$  to 4.

#### 8.2 States in the flux tube degrees of freedom

Consider next the states in flux tube degrees of freedom.

- 1. The situation is analogous to a construction of mesons from quarks and antiquarks and one obtains the analogs of  $\pi$  meson (pion) with spin 0 and  $\rho$  meson with spin 1. States of a given charge correspond to the tensor product  $2 \otimes 2 = 3 \oplus 1$  for the rotation group. Drop the singlet and take only the analog of neutral  $\rho$  meson. The physical meaning of this will be considered later.
- 2. Without any further constraints the tensor product  $3 \otimes 3 = 5 \oplus 3 \oplus 1$  gives 8+1 states. By dropping the scalar state this gives 8 states required by DNA and RNA analogs. Bosonic statistics allows only 5 unless the two color bonds have different charges. The degeneracies of the states for DNA/RNA type realization with a given spin projection for  $5 \oplus 3$  are (1, 2, 2, 2, 1).
- 3. For aminoacids only 5 completely symmetric under the exchange of flux tubes is required and is achieved if the two color bonds have identical charges. Genetic code means the projection of the states of  $5 \oplus 3$  to those of 5 with the same spin projection and same total charge.

## 8.3 Analogs of DNA,RNA, aminoacids, and of translation and transcription mechanisms

Consider next the identification of analogs of DNA, RNA and aminoacids and the baryonic realization of the genetic code, translation and transcription.

- 1. The analogs of DNA and RNA can be identified dark baryons with quark content *uud* and *ddu* and color bonds of different charges. There are 3 color bond pairs corresponding to charge pairs  $(q_1, q_2) = (-1, 0), (-1, 1), (0, 1)$  (the order of charges does not matter). The condition that the total charge of dark baryon vanishes allows for *uud* only the bond pair (-1, 0) and for *udd* only the pair (-1, 1). These thus only single neutral dark baryon of type *uud resp. udd*: these would be the analogous of DNA and RNA codons. Amino-acids would correspond to either *uuu* or *ddd* with identical color bonds with charges (-1, -1), (0, 0), or (1, 1). *uuu* with color bond charges (-1, -1) is the only neutral state. Hence only the analogs of DNA, RNA, and aminoacids are obtained, which is rather remarkable result.
- 2. The basic transcription and translation machinery could be realized as processes in which the analog of DNA can replicate, and can be transcribed to the analog of mRNA in turn translated to the analogs of amino-acids. In terms of flux tube connections the realization of genetic code, transcription, and translation, would mean that only dark baryons with same total quark spin and same total color bond spin can be connected by flux tubes. Charges are of course identical since they vanish.
- 3. Genetic code maps of  $(4 \oplus 2 \oplus 2) \otimes (5 \oplus 3)$  to the states of  $4 \times 5$ . The most natural map takes the states with given spin to a state with the same spin so that the code is unique. This would give the degeneracies D(k) as products of numbers  $D_B \in \{1, 2, 3, 2\}$  and  $D_b \in \{1, 2, 2, 2, 1\}$ :  $D = D_B \times D_b$ . Only the observed degeneracies D = 1, 2, 3, 4, 6 are predicted. The numbers N(k) of aminoacids coded by D codons would be

$$[N(1), N(2), N(3), N(4), N(6)] = [2, 7, 2, 6, 3]$$
.

The correct numbers for vertebrate nuclear code are (N(1), N(2), N(3), N(4), N(6)) = (2, 9, 1, 5, 3). Some kind of symmetry breaking must take place and should relate to the emergence of stopping codons. If one codon in second 3-plet becomes stopping codon, the 3-plet becomes doublet. If 2 codons in 4-plet become stopping codons it also becomes doublet and one obtains the correct result (2, 9, 1, 5, 3)!

4. Stopping codons would most naturally correspond to the codons, which involve the  $L_z = -1$  relative rotational excitation of uu or dd type quark pair. For the 3-plet the two candidates for the stopping codon state are  $|1/2, -1/2\rangle \otimes \{|2, k\rangle\}$ , k = 2, -2. The total spins are  $J_z = 3/2$  and  $J_z = -7/2$ . The three candidates for the 4-plet from which two states are thrown out are  $|1/2, -3/2\rangle \otimes \{|2, k\rangle, |1, k\rangle\}$ , k = 1, 0, -1. The total spins are now  $J_z = -1/2, -3/2, -5/2$ . One guess is that the states with smallest value of  $J_z$  are dropped which would mean that  $J_z = -7/2$  states in 3-plet and  $J_z = -5/2$  states 4-plet become stopping codons.

#### 8.4 Understanding the symmetries of the code

Quantum entanglement between quarks and color flux tubes would be essential for the baryonic realization of the genetic code whereas chemical realization could be said to be classical. Quantal aspect means that one cannot decompose to codon to letters anymore. This raises questions concerning the symmetries of the code.

1. What is the counterpart for the conjugation  $ZYZ \rightarrow X_c Y_c Z_c$  for the codons?

- 2. The conjugation of the second nucleotide Y having chemical interpretation in terms of hydrophobia-hydrophily dichotomy in biology. In DNA as tqc model it corresponds to matterantimatter conjugation for quarks associated with flux tubes connecting DNA nucleotides to the lipids of the cell membrane. What is the interpretation in now?
- 3. The A-G, T-C symmetries with respect to the third nucleotide Z allow an interpretation as weak isospin symmetry in DNA as tqc model. Can one identify counterpart of this symmetry when the decomposition into individual nucleotides does not make sense?

Natural candidates for the building blocks of the analogs of these symmetries are the change of the sign of the spin direction for quarks and for flux tubes.

- 1. For quarks the spin projections are always non-vanishing so that the map has no fixed points. For flux tube spin the states of spin  $S_z = 0$  are fixed points. The change of the sign of quark spin projection must therefore be present for both  $XYZ \rightarrow X_cY_cZ_c$  and  $Y \rightarrow Y_c$  but also something else might be needed. Note that without the symmetry breaking  $(1,3,3,1) \rightarrow (1,2,3,2)$  the code table would be symmetric in the permutation of 2 first and 2 last columns of the code table induced by both full conjugation and conjugation of Y.
- 2. The analogs of the approximate A G and T C symmetries cannot involve the change of spin direction in neither quark nor flux tube sector. These symmetries act inside the A-G and T-C sub-2-columns of the 4-columns defining the rows of the code table. Hence this symmetry must permute the states of same spin inside 5 and 3 for flux tubes and 4 and 2 for quarks but leave  $2_{odd}$  invariant. This guarantees that for the two non-degenerate codons coding for only single amino-acid and one of the codons inside triplet the action is trivial. Hence the baryonic analog of the approximate A G and T C symmetry would be exact symmetry and be due to the basic definition of the genetic code as a mapping states of same flux tube spin and quark spin to single representative state. The existence of full 4-columns coding for the same aminoacid would be due to the fact that states with same quark spin inside (2, 3, 2) code for the same amino-acid.
- 3. A detailed comparison of the code table with the code table in spin representation should allow to fix their correspondence uniquely apart from permutations of n-plets and thus also the representation of the conjugations. What is clear that Y conjugation must involve the change of quark spin direction whereas Z conjugation which maps typically 2-plets to each other must involve the permutation of states with same  $J_z$  for the flux tubes. It is not quite clear what X conjugation correspond to.

#### 8.5 Some comments about the physics behind the code

Consider next some particle physicist's objections against this picture.

- 1. The realization of the code requires the dark scaled variants of spin 3/2 baryons known as  $\Delta$  resonance and the analogs (and only the analogs) of spin 1 mesons known as  $\rho$  mesons. The lifetime of these states is very short in ordinary hadron physics. Now one has a scaled up variant of hadron physics: possibly in both dark and p-adic senses with latter allowing arbitrarily small overall mass scales. Hence the lifetimes of states can be scaled up.
- 2. Both the absolute and relative mass differences between  $\Delta$  and N resp.  $\rho$  and  $\pi$  are large in ordinary hadron physics and this makes the decays of  $\Delta$  and  $\rho$  possible kinematically. This is due to color magnetic spin-spin splitting proportional to the color coupling strength  $\alpha_s \sim .1$ , which is large. In the recent case  $\alpha_s$  could be considerably smaller say of the same order of magnitude as fine structure constant 1/137 so that the mass splittings could be so small as to make decays impossible.

- 3. Dark hadrons could have lower mass scale than the ordinary ones if scaled up variants of quarks in p-adic sense are in question. Note that the model for cold fusion that inspired the idea about genetic code requires that dark nuclear strings have the same mass scale as ordinary baryons. In any case, the most general option inspired by the vision about hierarchy of conscious entities extended to a hierarchy of life forms is that several dark and p-adic scaled up variants of baryons realizing genetic code are possible.
- 4. The heaviest objection relates to the addition of  $L_z = -1$  excitation to  $S_z = |1/2, \pm 1/2\rangle_{odd}$ states which transforms the degeneracies of the quark spin states from (1, 3, 3, 1) to (1, 2, 3, 2). The only reasonable answer is that the breaking of the full rotation symmetry reduces SO(3)to SO(2). Also the fact that the states of massless particles are labeled by the representation of SO(2) might be of some relevance. The deeper level explanation in TGD framework might be as follows. The generalized imbedding space is constructed by gluing almost copies of the 8-D imbedding space with different Planck constants together along a 4-D subspace like pages of book along a common back. The construction involves symmetry breaking in both rotational and color degrees of freedom to Cartan sub-group and the interpretation is as a geometric representation for the selection of the quantization axis. Quantum TGD is indeed meant to be a geometrization of the entire quantum physics as a physics of the classical spinor fields in the "world of classical worlds" so that also the choice of measurement axis must have a geometric description.

The conclusion is that genetic code can be understand as a map of stringy baryonic states induced by the projection of all states with same spin projection to a representative state with the same spin projection. Genetic code would be realized at the level of dark nuclear physics and perhaps also at the level of ordinary nuclear physics and that biochemical representation would be only one particular higher level representation of the code. A hierarchy of dark baryon realizations corresponding to p-adic and dark matter hierarchies can be considered. Translation and transcription machinery would be realized by flux tubes connecting only states with same quark spin and flux tube spin. Charge neutrality is essential for having only the analogs of DNA, RNA and aminoacids and would guarantee the em stability of the states.

#### Acknowledgements

I am grateful for Elio Conte for discussions which inspired further study of the nuclear string model.

# References

## Online books about TGD

- [1] M. Pitkänen (2006), *Topological Geometrodynamics: Overview*. http://www.helsinki.fi/~matpitka/tgdview/tgdview.html.
- [2] M. Pitkänen (2006), Quantum Physics as Infinite-Dimensional Geometry. http://www.helsinki.fi/~matpitka/tgdgeom/tgdgeom.html.
- [3] M. Pitkänen (2006), *Physics in Many-Sheeted Space-Time*. http://www.helsinki.fi/~matpitka/tgdclass/tgdclass.html.
- [4] M. Pitkänen (2006), Quantum TGD. http://www.helsinki.fi/~matpitka/tgdquant/tgdquant.html.

- [5] M. Pitkänen (2006), TGD as a Generalized Number Theory. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html.
- [6] M. Pitkänen (2006), p-Adic length Scale Hypothesis and Dark Matter Hierarchy. http://www.helsinki.fi/~matpitka/paddark/paddark.html.
- [7] M. Pitkänen (2006), TGD and Fringe Physics. http://www.helsinki.fi/~matpitka/freenergy/freenergy.html.

# Online books about TGD inspired theory of consciousness and quantum biology

- [8] M. Pitkänen (2006), Bio-Systems as Self-Organizing Quantum Systems. http://www.helsinki.fi/~matpitka/bioselforg/bioselforg.html.
- M. Pitkänen (2006), Quantum Hardware of Living Matter. http://www.helsinki.fi/~matpitka/bioware/bioware.html.
- [10] M. Pitkänen (2006), TGD Inspired Theory of Consciousness. http://www.helsinki.fi/~matpitka/tgdconsc/tgdconsc.html.
- [11] M. Pitkänen (2006), Mathematical Aspects of Consciousness Theory. http://www.helsinki.fi/~matpitka/genememe/genememe.html.
- M. Pitkänen (2006), TGD and EEG. http://www.helsinki.fi/~matpitka/tgdeeg/tgdeeg/tgdeeg.html.
- M. Pitkänen (2006), Bio-Systems as Conscious Holograms. http://www.helsinki.fi/~matpitka/hologram/hologram.html.
- M. Pitkänen (2006), Magnetospheric Consciousness. http://www.helsinki.fi/~matpitka/magnconsc/magnconsc.html.
- [15] M. Pitkänen (2006), Mathematical Aspects of Consciousness Theory. http://www.helsinki.fi/~matpitka/magnconsc/mathconsc.html.

## References to the chapters of books

- [C10] The chapter *Does TGD Predict the Spectrum of Planck Constants?* of [4]. http://www.helsinki.fi/~matpitka/tgdquant/tgdquant.html#Planck.
- [D8] The chapter *Quantum Astrophysics* of [3]. http://www.helsinki.fi/~matpitka/tgdclass/tgdclass.html#qastro.
- [F7] The chapter *The Recent Status of Leptohadron Hypothesis* of [6]. http://www.helsinki.fi/~matpitka/paddark/paddark.html#leptc.
- [F8] The chapter *TGD and Nuclear Physics* of [6]. http://www.helsinki.fi/~matpitka/paddark/paddark.html#padnucl.
- [F10] The chapter Dark Nuclear Physics and Condensed Matter of [6]. http://www.helsinki.fi/~matpitka/paddark/paddark.html#exonuclear.

- [G2] The chapter The Notion of Free Energy and Many-Sheeted Space-Time Concept of [7]. http://www.helsinki.fi/~matpitka/freenergy/freenergy.html#freenergy.
- [L6] The chapter The Notion of Wave-Genome and DNA as Topological Quantum Computer of [11]. http://www.helsinki.fi/~matpitka/genememe/genememe.html#gari.

# Particle physics

- [16] X.-G. He, J. Tandean, G. Valencia (2007), Has HyperCP Observed a Light Higgs Boson?, Phys. Rev. D74. http://arxiv.org/abs/hep-ph/0610274.
- [17] X.-G. He, J. Tandean, G. Valencia (2007), Light Higgs Production in Hyperon Decay, Phys. Rev. Lett. 98. http://arxiv.org/abs/hep-ph/0610362.

## **Nuclear Physics**

- [18] P. G. Hansen(1993), Nuclear structure at the drip lines, Nuclear Phys. A, Vol. 553.
- [19] F. M. Marquez et al (2003), Phys. Rev. C65, 044006.
- [20] C.A. Bertulani, V. Zelevinsky (2002), Is the tetra-neutron a bound dineutron-dineutron molecule?, J.Phys. G29, 2431-2437. arXiv:nucl-th/0212060.
- [21] C. Illert (1993), ALCHEMY TODAY-Platonic Geometries in Nuclear Physics, Volume 1. ISBN 0 949357 13 8, second edition. Science-Art Library.
- [22] S. Moszkowski (1996), Maria Goeppert Mayer, Talk Presented at APS meeting Indianapolis, May 4, 1996.
  http://www.physics.ucla.edu/ moszkows/mgm/mgmso.htm. See also "Magic Numbers" in Nuclear Structure, http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html#c2. Enhanced abundance of magic number nuclei, http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell2.html.
- [23] B. Dume (2005)."Magic" numbers remain Physics Web. magic, http://physicsweb.org/articles/news/9/6/9/1. (Si(14,28) is magic unstable nucleus.) B. Ray (2005), FSU researchers find 'magic' at the subatomic level, http://www.fsu.com/pages/2005/07/05/magic\_subatomic.html. (Magic Number N=14.) "16" New Magic Number Where Nuclei Exist Stably Discovered, http://www.mext.go.jp/english/news/2000/06/s000606.html. A. Ozawa et al (2000), Phys. Rev. Lett.84, 5493. (Magic number N=16). A. Ozawa et al (2001), Observation of new proton and neutron magic numbers, http://lbl.confex.com/lbl/2001/program/abstract\_97.htm. (Magic numbers N=16,20,32.)
- [24] The Berkeley Laboratory Isotopes Project's Exploring the Table of Isotopes, http://ie.lbl.gov/education/parent/Ti\_iso.htm.
- [25] R. Howard (1963), Nuclear Physics, Wadsworth Publishing Company, Inc..

- [26] J. E. Ungar (1982), Double Charge Exchange of pions on <sup>4</sup>He, PhD thesis in California Institute of Technology, http://etd.caltech.edu/etd/available/etd-11032005-112918/unrestricted/Ungar\_je\_1983.pdf
- [27] Dineutron, http://en.wikipedia.org/wiki/Dineutron.
- [28] Polyneutron, http://en.wikipedia.org/wiki/Polyneutron.
- [29] S. M. Wong(1990), Introductory Nuclear Physics, Prentice-Hall Inc.
- [30] B. S. Iskhanov, I. M. Kapitonov, V. V. Varlamov, Giant Dipole Resonance: What is Known About?, http://cdfe.sinp.msu.ru/publications/lshkhnv-ELI03.pdf.
- [31] T. Baumann et al (1998), Evolution of the Giant Dipole Resonance in Excited <sup>120</sup>Sn and <sup>208</sup>Pb Nuclei Populated by Inelastic Alpha Scattering, Nucl. Phys. A 635, 428-445. http://www.phy.ornl.gov/progress/ribphys/reaction/rib031.pdf.
- [32] T. Yamagata et al (2005), Excitations of the Giant Dipole Resonances in <sup>4</sup>He and in the alpha Cluster of <sup>6,7</sup>Li via (p,p') Reactions, EXOTIC NUCLEAR SYSTEMS: International Symposium on Exotic Nuclear Systems ENS'05. AIP Conference Proceedings, Volume 802, pp. 301-304.
- [33] D. Vretenar, N. Paar, P. Ring, G. A. Lasazissis (1998), Nonlinear dynamics of giant resonances in atomic nuclei, arXiv:nucl-th/9809003.
- [34] T. N. Leite, N. Teruya Structure of the Isovector Dipole Resonance in Neutron-Rich <sup>60</sup>Ca Nucleus and Direct Decay from Pygmy Resonance. arXiv:nucl-th/0308081.
- [35] G. Tertuchny et al (2006), Microscopic description of the pygmy and giant electric dipole resonances in stable Ca isotopes. arXiv:nucl-th/0603/0603051.
- [36] Lithium, http://en.wikipedia.org/wiki/Lithium.
- [37] C. Charbonnel and F. Primas (2005), The lithium content of the Galactic Halo stars, astro-ph/0505247. http://www.arxiv.org/PS\_cache/astro-ph/pdf/0505/0505247v2.pdf.

## Cold fusion

- [38] E. Storms (2001), Cold fusion, an objective assessment, http://home.netcom.com/ storms2/review8.html.
- [39] Russ George's homepage, http://www.hooked.net/ rgeorge/saturnahome.html .
- [40] J. Schwinger (1992), Energy Transfer In Cold Fusion and Sonoluminescence, http://jcbmac.chem.brown.edu/baird/coldfusion/schwinger.html.
- [41] V. J. Stenger (1995), ESP and Cold Fusion: parallels in pseudoscience, http://www.phys.hawaii.edu/vjs/www/cold.txt.
- [42] Whatever happened to cold fusion? http://www.caltech.edu:80/7Egoodstein/fusion.html. ork.

[43] Jed Rothwell(1996).

Some recent developments in cold fusion, http://ourworld.compuserve.com/homepages/JedRothwell/brieftec.htm. TheSecondCon-Report onInternational Low Energy Nuclear Reactions Texas. ference Holiday Inn, College Station, September 13-14, 1996. http://ourworld.compuserve.com/homepages/JedRothwell/ilenrc2s.htm, Review of the Sixth International Conference on Cold Fusion (ICCF6), http://ourworld.compuserve.com/homepages/JedRothwell/iccf6rev.htm

- [44] Cold fusion is back at the American Chemical Society, http://www.nature.com/news/2007/070326/full/070326-12.html.
   Cold fusion - hot news again, http://www.newscientist.com/channel/fundamentals/mg19426021.000-cold-fusion-hot-newsagain.html.
- [45] Extraordinary Evidence, http://newenergytimes.com/news/2006/NET19.htm#ee.
- [46] Ph. M. Kanarev and T. Mizuno (2002), Cold fusion by plasma electrolysis of water, http://www.guns.connect.fi/innoplaza/energy/story/Kanarev/coldfusion/.
- [47] P. Kanarev (2002), Water is New Source of Energy, Krasnodar.
- [48] T. Mizuno et al (2002), Hydrogen Evolution by Plasma Electolysis in Aqueous solution, Japanese Journal of Appleid Physics, Vol. 44, No 1A, pp. 396-401.
- [49] Mizuno-Omori Cold Fusion Reactor(1998), Infinite Energy Magazine, Vol4, Issue 20. http://www.amasci.com/weird/anode.txt.
- [50] J. Naudin (2003), Cold Fusion reactor experimental test results, http://jlnlabs.online.fr/cfr/html/cfrdatas.htm.
- [51] C. L. Kervran (1972), Biological transmutations, and their applications in chemistry, physics, biology, ecology, medicine, nutrition, agriculture, geology, Swan House Publishing Co.
- [52] P. Tompkins and C. Bird (1973), The secret life of plants, Harper & Row, New York.
- [53] Burning salt water, http://www.youtube.com/watch?v=aGg0ATfoBgo.
- [54] A. Widom and L. Larsen (2007), Theoretical Standard Model Rates of Proton to Neutron Conversions Near Metallic Hydride Surfaces nucl-th/0608059. http://newenergytimes.com/Library/2006WidomLarsen-TheoreticalStandard-V2.pdf.
- [55] J. Prochaska, J. C. Howk, A. M. Wolfe (2003), The elemental abundance pattern in a galaxy at z = 2.626, Nature 423, 57-59 (2003). See also Distant elements of surprise, http://physicsworld.com/cws/article/print/17750.
- [56] G. Hasinger, N. Schartel, S. Komossa 22007).Discovery of an Ionized Fe K Edge in the z=3.91 Broad Absorption Line Quasar APM 08279+5255 with XMM-Newton arXiv:astroph/0207005. See also Mysterious iron factor in early universe, Mazx Planck Institute Press release. http://www.mpe.mpg.de/Highlights/pr20020708.html.

#### Molecular and condensed matter physics

- [57], Rotational energies of molecules, http://hyperphysics.phy-astr.gsu.edu/HBASE/molecule/rotrig.html#c3.
- [58] Molecular radii of di-atomic molecules, http://hyperphysics.phy-astr.gsu.edu/HBASE/tables/diatomic.html#c1.
- [59] M. Chaplin (2005), Water Structure and Behavior, http://www.lsbu.ac.uk/water/index.html.
  For 41 anomalies see http://www.lsbu.ac.uk/water/anmlies.html.
  For the icosahedral clustering see http://www.lsbu.ac.uk/water/clusters.html.
- [60] J. K. Borchardt (2003), The chemical formula  $H_2O$  a misnomer, The Alchemist 8 Aug (2003).
- [61] R. A. Cowley (2004), Neutron-scattering experiments and quantum entanglement, Physica B 350 (2004) 243-245.
- [62] R. Moreh, R. C. Block, Y. Danon, and M. Neumann (2005), Search for anomalous scattering of keV neutrons from H2O-D2O mixtures, Phys. Rev. Lett. 94, 185301.
- [63] Hydrogen bonds, http://en.wikipedia.org/wiki/Hydrogen\_bond.
- [64] R. Matthews (1997), Wacky Water, New Scientist 154 (2087):4043, 21 June.
- [65] J-C. Li and D.K. Ross (1993), Evidence of Two Kinds of Hydrogen Bonds in Ices. J-C. Li and D.K. Ross, Nature, 365, 327-329.
- [66] Electrolysis of water, http://en.wikipedia.org/wiki/Electrolysis\_of\_water.
- [67] *Pyrolysis*, http://en.wikipedia.org/wiki/Pyrolysis.
- [68] Natrium, http://en.wikipedia.org/wiki/Natrium.
- [69] GSI collaboration (2008), Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like <sup>140</sup>Pr and <sup>142</sup>Pm Ions. http://xxx.lanl.gov/abs/0801.2079.
- [70] Hitchhikers-guide-to-ghosts-and-spooks in particle physics. Blog posting. http://resonaances.blogspot.com/2008/11/hitchhikers-guide-to-ghosts-and-spooks.html.
   M. Pitkänen (2008), Tritium beta decay anomaly and variations in the rates of radioactive processes. http://matpitka.blogspot.com/2008/09/variations-in-rates-of-radioactive.html.